Найти производную y' = f'(x) = 2/x^2 (2 делить на х в квадрате) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная 2/x^2

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
2 
--
 2
x 
$$\frac{2}{x^{2}}$$
Подробное решение
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Заменим .

    2. В силу правила, применим: получим

    3. Затем примените цепочку правил. Умножим на :

      1. В силу правила, применим: получим

      В результате последовательности правил:

    Таким образом, в результате:


Ответ:

График
Первая производная [src]
-4 
---
  3
 x 
$$- \frac{4}{x^{3}}$$
Вторая производная [src]
12
--
 4
x 
$$\frac{12}{x^{4}}$$
Третья производная [src]
-48 
----
  5 
 x  
$$- \frac{48}{x^{5}}$$