Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
sin(x) / sin(x) \
(2 + log(x)) *|cos(x)*log(2 + log(x)) + --------------|
\ x*(2 + log(x))/
$$\left(\log{\left(\log{\left(x \right)} + 2 \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x \left(\log{\left(x \right)} + 2\right)}\right) \left(\log{\left(x \right)} + 2\right)^{\sin{\left(x \right)}}$$
/ 2 \
sin(x) |/ sin(x) \ sin(x) sin(x) 2*cos(x) |
(2 + log(x)) *||cos(x)*log(2 + log(x)) + --------------| - log(2 + log(x))*sin(x) - --------------- - ---------------- + --------------|
|\ x*(2 + log(x))/ 2 2 2 x*(2 + log(x))|
\ x *(2 + log(x)) x *(2 + log(x)) /
$$\left(\log{\left(x \right)} + 2\right)^{\sin{\left(x \right)}} \left(\left(\log{\left(\log{\left(x \right)} + 2 \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x \left(\log{\left(x \right)} + 2\right)}\right)^{2} - \log{\left(\log{\left(x \right)} + 2 \right)} \sin{\left(x \right)} + \frac{2 \cos{\left(x \right)}}{x \left(\log{\left(x \right)} + 2\right)} - \frac{\sin{\left(x \right)}}{x^{2} \left(\log{\left(x \right)} + 2\right)} - \frac{\sin{\left(x \right)}}{x^{2} \left(\log{\left(x \right)} + 2\right)^{2}}\right)$$
/ 3 \
sin(x) |/ sin(x) \ / sin(x) \ / sin(x) sin(x) 2*cos(x) \ 3*sin(x) 3*cos(x) 3*cos(x) 2*sin(x) 2*sin(x) 3*sin(x) |
(2 + log(x)) *||cos(x)*log(2 + log(x)) + --------------| - cos(x)*log(2 + log(x)) - 3*|cos(x)*log(2 + log(x)) + --------------|*|log(2 + log(x))*sin(x) + --------------- + ---------------- - --------------| - -------------- - --------------- - ---------------- + --------------- + ---------------- + ----------------|
|\ x*(2 + log(x))/ \ x*(2 + log(x))/ | 2 2 2 x*(2 + log(x))| x*(2 + log(x)) 2 2 2 3 3 3 3 2|
\ \ x *(2 + log(x)) x *(2 + log(x)) / x *(2 + log(x)) x *(2 + log(x)) x *(2 + log(x)) x *(2 + log(x)) x *(2 + log(x)) /
$$\left(\log{\left(x \right)} + 2\right)^{\sin{\left(x \right)}} \left(\left(\log{\left(\log{\left(x \right)} + 2 \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x \left(\log{\left(x \right)} + 2\right)}\right)^{3} - 3 \left(\log{\left(\log{\left(x \right)} + 2 \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x \left(\log{\left(x \right)} + 2\right)}\right) \left(\log{\left(\log{\left(x \right)} + 2 \right)} \sin{\left(x \right)} - \frac{2 \cos{\left(x \right)}}{x \left(\log{\left(x \right)} + 2\right)} + \frac{\sin{\left(x \right)}}{x^{2} \left(\log{\left(x \right)} + 2\right)} + \frac{\sin{\left(x \right)}}{x^{2} \left(\log{\left(x \right)} + 2\right)^{2}}\right) - \log{\left(\log{\left(x \right)} + 2 \right)} \cos{\left(x \right)} - \frac{3 \sin{\left(x \right)}}{x \left(\log{\left(x \right)} + 2\right)} - \frac{3 \cos{\left(x \right)}}{x^{2} \left(\log{\left(x \right)} + 2\right)} - \frac{3 \cos{\left(x \right)}}{x^{2} \left(\log{\left(x \right)} + 2\right)^{2}} + \frac{2 \sin{\left(x \right)}}{x^{3} \left(\log{\left(x \right)} + 2\right)} + \frac{3 \sin{\left(x \right)}}{x^{3} \left(\log{\left(x \right)} + 2\right)^{2}} + \frac{2 \sin{\left(x \right)}}{x^{3} \left(\log{\left(x \right)} + 2\right)^{3}}\right)$$