acot(x)
-2 *log(2)
-----------------
2
1 + x
$$- \frac{2^{\operatorname{acot}{\left (x \right )}}}{x^{2} + 1} \log{\left (2 \right )}$$
acot(x)
2 *(2*x + log(2))*log(2)
------------------------------
2
/ 2\
\1 + x /
$$\frac{2^{\operatorname{acot}{\left (x \right )}}}{\left(x^{2} + 1\right)^{2}} \left(2 x + \log{\left (2 \right )}\right) \log{\left (2 \right )}$$
/ 2 2 \
acot(x) | log (2) 8*x 6*x*log(2)|
2 *|2 - ------- - ------ - ----------|*log(2)
| 2 2 2 |
\ 1 + x 1 + x 1 + x /
---------------------------------------------------
2
/ 2\
\1 + x /
$$\frac{2^{\operatorname{acot}{\left (x \right )}}}{\left(x^{2} + 1\right)^{2}} \left(- \frac{8 x^{2}}{x^{2} + 1} - \frac{6 x \log{\left (2 \right )}}{x^{2} + 1} + 2 - \frac{\log^{2}{\left (2 \right )}}{x^{2} + 1}\right) \log{\left (2 \right )}$$