Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
log(x) / / x\ \
/ x\ |log\e / |
\e / *|------- + log(x)|
\ x /
$$\left(\log{\left (x \right )} + \frac{1}{x} \log{\left (e^{x} \right )}\right) \left(e^{x}\right)^{\log{\left (x \right )}}$$
/ / x\\
| 2 log\e /|
log(x) |/ / x\ \ 2 - -------|
/ x\ ||log\e / | x |
\e / *||------- + log(x)| + -----------|
\\ x / x /
$$\left(\left(\log{\left (x \right )} + \frac{1}{x} \log{\left (e^{x} \right )}\right)^{2} + \frac{1}{x} \left(2 - \frac{1}{x} \log{\left (e^{x} \right )}\right)\right) \left(e^{x}\right)^{\log{\left (x \right )}}$$
/ / x\ / / x\\ / / x\ \\
| 3 2*log\e / | log\e /| |log\e / ||
log(x) |/ / x\ \ 3 - --------- 3*|2 - -------|*|------- + log(x)||
/ x\ ||log\e / | x \ x / \ x /|
\e / *||------- + log(x)| - ------------- + ----------------------------------|
|\ x / 2 x |
\ x /
$$\left(\left(\log{\left (x \right )} + \frac{1}{x} \log{\left (e^{x} \right )}\right)^{3} + \frac{3}{x} \left(2 - \frac{1}{x} \log{\left (e^{x} \right )}\right) \left(\log{\left (x \right )} + \frac{1}{x} \log{\left (e^{x} \right )}\right) - \frac{1}{x^{2}} \left(3 - \frac{2}{x} \log{\left (e^{x} \right )}\right)\right) \left(e^{x}\right)^{\log{\left (x \right )}}$$