/ 2 \ / d \|
\1 + tan (x)/*|-----(floor(xi_1))||
\dxi_1 /|xi_1=tan(x)
$$\left(\tan^{2}{\left (x \right )} + 1\right) \left. \frac{d}{d \xi_{1}} \lfloor{\xi_{1}}\rfloor \right|_{\substack{ \xi_{1}=\tan{\left (x \right )} }}$$
/ 2 \
/ 2 \ |/ 2 \ d / d \| |
\1 + tan (x)/*|\1 + tan (x)/*--------(floor(tan(x))) + 2*|-----(floor(xi_1))|| *tan(x)|
| 2 \dxi_1 /|xi_1=tan(x) |
\ dtan(x) /
$$\left(\left(\tan^{2}{\left (x \right )} + 1\right) \frac{d^{2}}{d \tan{\left (x \right )}^{2}} \lfloor{\tan{\left (x \right )}}\rfloor + 2 \tan{\left (x \right )} \left. \frac{d}{d \xi_{1}} \lfloor{\xi_{1}}\rfloor \right|_{\substack{ \xi_{1}=\tan{\left (x \right )} }}\right) \left(\tan^{2}{\left (x \right )} + 1\right)$$
/ / 3 2 \ 2 \
/ 2 \ |/ 2 \ | / d \| / 2 \ d d | / 2 \ / d \| 2 / d \| / 2 \ d |
\1 + tan (x)/*|\1 + tan (x)/*|2*|-----(floor(xi_1))|| + \1 + tan (x)/*--------(floor(tan(x))) + 4*--------(floor(tan(x)))*tan(x)| + 2*\1 + tan (x)/*|-----(floor(xi_1))|| + 4*tan (x)*|-----(floor(xi_1))|| + 6*\1 + tan (x)/*--------(floor(tan(x)))*tan(x)|
| | \dxi_1 /|xi_1=tan(x) 3 2 | \dxi_1 /|xi_1=tan(x) \dxi_1 /|xi_1=tan(x) 2 |
\ \ dtan(x) dtan(x) / dtan(x) /
$$\left(\tan^{2}{\left (x \right )} + 1\right) \left(\left(\tan^{2}{\left (x \right )} + 1\right) \left(\left(\tan^{2}{\left (x \right )} + 1\right) \frac{d^{3}}{d \tan{\left (x \right )}^{3}} \lfloor{\tan{\left (x \right )}}\rfloor + 4 \tan{\left (x \right )} \frac{d^{2}}{d \tan{\left (x \right )}^{2}} \lfloor{\tan{\left (x \right )}}\rfloor + 2 \left. \frac{d}{d \xi_{1}} \lfloor{\xi_{1}}\rfloor \right|_{\substack{ \xi_{1}=\tan{\left (x \right )} }}\right) + 6 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} \frac{d^{2}}{d \tan{\left (x \right )}^{2}} \lfloor{\tan{\left (x \right )}}\rfloor + 2 \left(\tan^{2}{\left (x \right )} + 1\right) \left. \frac{d}{d \xi_{1}} \lfloor{\xi_{1}}\rfloor \right|_{\substack{ \xi_{1}=\tan{\left (x \right )} }} + 4 \tan^{2}{\left (x \right )} \left. \frac{d}{d \xi_{1}} \lfloor{\xi_{1}}\rfloor \right|_{\substack{ \xi_{1}=\tan{\left (x \right )} }}\right)$$