1 1
----------- + ------------
________ _________
/ 2 / 2
\/ 1 + x \/ -1 + x
$$\frac{1}{\sqrt{x^{2} + 1}} + \frac{1}{\sqrt{x^{2} - 1}}$$
/ 1 1 \
-x*|----------- + ------------|
| 3/2 3/2|
|/ 2\ / 2\ |
\\1 + x / \-1 + x / /
$$- x \left(\frac{1}{\left(x^{2} + 1\right)^{\frac{3}{2}}} + \frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}}\right)$$
2 2
1 1 3*x 3*x
- ----------- - ------------ + ----------- + ------------
3/2 3/2 5/2 5/2
/ 2\ / 2\ / 2\ / 2\
\1 + x / \-1 + x / \1 + x / \-1 + x /
$$\frac{3 x^{2}}{\left(x^{2} + 1\right)^{\frac{5}{2}}} + \frac{3 x^{2}}{\left(x^{2} - 1\right)^{\frac{5}{2}}} - \frac{1}{\left(x^{2} + 1\right)^{\frac{3}{2}}} - \frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}}$$