Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
x / 2*x \
atanh (2*x)*|--------------------- + log(atanh(2*x))|
|/ 2\ |
\\1 - 4*x /*atanh(2*x) /
$$\left(\frac{2 x}{\left(- 4 x^{2} + 1\right) \operatorname{atanh}{\left (2 x \right )}} + \log{\left (\operatorname{atanh}{\left (2 x \right )} \right )}\right) \operatorname{atanh}^{x}{\left (2 x \right )}$$
/ / 2 \\
| | 4*x x ||
| 4*|1 - --------- + ----------------------||
| 2 | 2 / 2\ ||
x |/ 2*x \ \ -1 + 4*x \-1 + 4*x /*atanh(2*x)/|
atanh (2*x)*||-log(atanh(2*x)) + ----------------------| - ------------------------------------------|
|| / 2\ | / 2\ |
\\ \-1 + 4*x /*atanh(2*x)/ \-1 + 4*x /*atanh(2*x) /
$$\left(\left(\frac{2 x}{\left(4 x^{2} - 1\right) \operatorname{atanh}{\left (2 x \right )}} - \log{\left (\operatorname{atanh}{\left (2 x \right )} \right )}\right)^{2} - \frac{1}{\left(4 x^{2} - 1\right) \operatorname{atanh}{\left (2 x \right )}} \left(- \frac{16 x^{2}}{4 x^{2} - 1} + \frac{4 x}{\left(4 x^{2} - 1\right) \operatorname{atanh}{\left (2 x \right )}} + 4\right)\right) \operatorname{atanh}^{x}{\left (2 x \right )}$$
/ / 3 2 \ / 2 \\
| | 3 64*x 24*x 4*x | / 2*x \ | 4*x x ||
| 4*|-16*x + ---------- + --------- - ---------------------- + -----------------------| 12*|-log(atanh(2*x)) + ----------------------|*|1 - --------- + ----------------------||
| 3 | atanh(2*x) 2 / 2\ / 2\ 2 | | / 2\ | | 2 / 2\ ||
x | / 2*x \ \ -1 + 4*x \-1 + 4*x /*atanh(2*x) \-1 + 4*x /*atanh (2*x)/ \ \-1 + 4*x /*atanh(2*x)/ \ -1 + 4*x \-1 + 4*x /*atanh(2*x)/|
atanh (2*x)*|- |-log(atanh(2*x)) + ----------------------| - ------------------------------------------------------------------------------------- + ---------------------------------------------------------------------------------------|
| | / 2\ | 2 / 2\ |
| \ \-1 + 4*x /*atanh(2*x)/ / 2\ \-1 + 4*x /*atanh(2*x) |
\ \-1 + 4*x / *atanh(2*x) /
$$\left(- \left(\frac{2 x}{\left(4 x^{2} - 1\right) \operatorname{atanh}{\left (2 x \right )}} - \log{\left (\operatorname{atanh}{\left (2 x \right )} \right )}\right)^{3} + \frac{12}{\left(4 x^{2} - 1\right) \operatorname{atanh}{\left (2 x \right )}} \left(\frac{2 x}{\left(4 x^{2} - 1\right) \operatorname{atanh}{\left (2 x \right )}} - \log{\left (\operatorname{atanh}{\left (2 x \right )} \right )}\right) \left(- \frac{4 x^{2}}{4 x^{2} - 1} + \frac{x}{\left(4 x^{2} - 1\right) \operatorname{atanh}{\left (2 x \right )}} + 1\right) - \frac{1}{\left(4 x^{2} - 1\right)^{2} \operatorname{atanh}{\left (2 x \right )}} \left(\frac{256 x^{3}}{4 x^{2} - 1} - \frac{96 x^{2}}{\left(4 x^{2} - 1\right) \operatorname{atanh}{\left (2 x \right )}} - 64 x + \frac{16 x}{\left(4 x^{2} - 1\right) \operatorname{atanh}^{2}{\left (2 x \right )}} + \frac{12}{\operatorname{atanh}{\left (2 x \right )}}\right)\right) \operatorname{atanh}^{x}{\left (2 x \right )}$$