Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
/ 2 \
x _________ | log(tanh(x)) 1 - tanh (x)|
\/ tanh(x) *|- ------------ + ------------|
| 2 x*tanh(x) |
\ x /
$$\left(\frac{- \tanh^{2}{\left (x \right )} + 1}{x \tanh{\left (x \right )}} - \frac{1}{x^{2}} \log{\left (\tanh{\left (x \right )} \right )}\right) \tanh^{\frac{1}{x}}{\left (x \right )}$$
/ 2 \
| / 2 \ |
| |log(tanh(x)) -1 + tanh (x)| 2 |
| |------------ + -------------| / 2 \ / 2 \|
x _________ | 2 \ x tanh(x) / \-1 + tanh (x)/ 2*log(tanh(x)) 2*\-1 + tanh (x)/|
\/ tanh(x) *|-2 + 2*tanh (x) + ------------------------------- - ---------------- + -------------- + -----------------|
| x 2 2 x*tanh(x) |
\ tanh (x) x /
-----------------------------------------------------------------------------------------------------------------------
x
$$\frac{1}{x} \left(- \frac{\left(\tanh^{2}{\left (x \right )} - 1\right)^{2}}{\tanh^{2}{\left (x \right )}} + 2 \tanh^{2}{\left (x \right )} - 2 + \frac{1}{x} \left(\frac{\tanh^{2}{\left (x \right )} - 1}{\tanh{\left (x \right )}} + \frac{1}{x} \log{\left (\tanh{\left (x \right )} \right )}\right)^{2} + \frac{2 \tanh^{2}{\left (x \right )} - 2}{x \tanh{\left (x \right )}} + \frac{2}{x^{2}} \log{\left (\tanh{\left (x \right )} \right )}\right) \tanh^{\frac{1}{x}}{\left (x \right )}$$
/ / 2 \ \
| 3 / 2 \ | / 2 \ / 2 \| |
|/ 2 \ |log(tanh(x)) -1 + tanh (x)| | 2 \-1 + tanh (x)/ 2*log(tanh(x)) 2*\-1 + tanh (x)/| |
||log(tanh(x)) -1 + tanh (x)| 2 3 2 3*|------------ + -------------|*|-2 + 2*tanh (x) - ---------------- + -------------- + -----------------| |
||------------ + -------------| / 2 \ / 2 \ / 2 \ / 2 \ \ x tanh(x) / | 2 2 x*tanh(x) | / 2 \|
x _________ |\ x tanh(x) / 4*\-1 + tanh (x)/ 2*\-1 + tanh (x)/ / 2 \ 6*\-1 + tanh (x)/ 6*log(tanh(x)) 3*\-1 + tanh (x)/ \ tanh (x) x / 6*\-1 + tanh (x)/|
-\/ tanh(x) *|------------------------------- - ------------------ + ------------------ + 4*\-1 + tanh (x)/*tanh(x) + ----------------- + -------------- - ------------------ + ---------------------------------------------------------------------------------------------------------- + -----------------|
| 2 tanh(x) 3 x 3 2 x 2 |
\ x tanh (x) x x*tanh (x) x *tanh(x) /
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
x
$$- \frac{1}{x} \left(\frac{2 \left(\tanh^{2}{\left (x \right )} - 1\right)^{3}}{\tanh^{3}{\left (x \right )}} - \frac{4 \left(\tanh^{2}{\left (x \right )} - 1\right)^{2}}{\tanh{\left (x \right )}} + 4 \left(\tanh^{2}{\left (x \right )} - 1\right) \tanh{\left (x \right )} + \frac{3}{x} \left(\frac{\tanh^{2}{\left (x \right )} - 1}{\tanh{\left (x \right )}} + \frac{1}{x} \log{\left (\tanh{\left (x \right )} \right )}\right) \left(- \frac{\left(\tanh^{2}{\left (x \right )} - 1\right)^{2}}{\tanh^{2}{\left (x \right )}} + 2 \tanh^{2}{\left (x \right )} - 2 + \frac{2 \tanh^{2}{\left (x \right )} - 2}{x \tanh{\left (x \right )}} + \frac{2}{x^{2}} \log{\left (\tanh{\left (x \right )} \right )}\right) - \frac{3 \left(\tanh^{2}{\left (x \right )} - 1\right)^{2}}{x \tanh^{2}{\left (x \right )}} + \frac{1}{x} \left(6 \tanh^{2}{\left (x \right )} - 6\right) + \frac{1}{x^{2}} \left(\frac{\tanh^{2}{\left (x \right )} - 1}{\tanh{\left (x \right )}} + \frac{1}{x} \log{\left (\tanh{\left (x \right )} \right )}\right)^{3} + \frac{6 \tanh^{2}{\left (x \right )} - 6}{x^{2} \tanh{\left (x \right )}} + \frac{6}{x^{3}} \log{\left (\tanh{\left (x \right )} \right )}\right) \tanh^{\frac{1}{x}}{\left (x \right )}$$