x cos (4)
d / x \ --\cos (4)/ dx
ddxcosx(4)=(log(−cos(4))+iπ)cosx(4)\frac{d}{d x} \cos^{x}{\left(4 \right)} = \left(\log{\left(- \cos{\left(4 \right)} \right)} + i \pi\right) \cos^{x}{\left(4 \right)}dxdcosx(4)=(log(−cos(4))+iπ)cosx(4)
Ответ:
(log(−cos(4))+iπ)cosx(4)\left(\log{\left(- \cos{\left(4 \right)} \right)} + i \pi\right) \cos^{x}{\left(4 \right)}(log(−cos(4))+iπ)cosx(4)
x cos (4)*(pi*I + log(-cos(4)))
2 x (pi*I + log(-cos(4))) *cos (4)
3 x (pi*I + log(-cos(4))) *cos (4)