Производная cos(-16*pi)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
cos(-16*pi)
cos(16π)\cos{\left (- 16 \pi \right )}
Подробное решение
  1. Заменим u=16πu = - 16 \pi.

  2. Производная косинус есть минус синус:

    dducos(u)=sin(u)\frac{d}{d u} \cos{\left (u \right )} = - \sin{\left (u \right )}

  3. Затем примените цепочку правил. Умножим на ddx(16π)\frac{d}{d x}\left(- 16 \pi\right):

    1. Производная постоянной 16π- 16 \pi равна нулю.

    В результате последовательности правил:

    00


Ответ:

00

Первая производная [src]
0
00
Вторая производная [src]
0
00
Третья производная [src]
0
00