Применим правило производной частного:
dxd(g(x)f(x))=g2(x)1(−f(x)dxdg(x)+g(x)dxdf(x))
f(x)=cos(x) и g(x)=−x+π.
Чтобы найти dxdf(x):
Производная косинус есть минус синус:
dxdcos(x)=−sin(x)
Чтобы найти dxdg(x):
дифференцируем −x+π почленно:
Производная постоянной π равна нулю.
Производная произведения константы на функцию есть произведение этой константы на производную данной функции.
В силу правила, применим: x получим 1
Таким образом, в результате: −1
В результате: −1
Теперь применим правило производной деления:
(−x+π)21(−(−x+π)sin(x)+cos(x))