Найти производную y' = f'(x) = cos(x-pi/3) (косинус от (х минус число пи делить на 3)) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Вы ввели:

cos(x-pi/3)

Что Вы имели ввиду?

Производная cos(x-pi/3)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   /    pi\
cos|x - --|
   \    3 /
$$\cos{\left(x - \frac{\pi}{3} \right)}$$
d /   /    pi\\
--|cos|x - --||
dx\   \    3 //
$$\frac{d}{d x} \cos{\left(x - \frac{\pi}{3} \right)}$$
Подробное решение
  1. Заменим .

  2. Производная косинус есть минус синус:

  3. Затем примените цепочку правил. Умножим на :

    1. дифференцируем почленно:

      1. В силу правила, применим: получим

      2. Производная постоянной равна нулю.

      В результате:

    В результате последовательности правил:

  4. Теперь упростим:


Ответ:

График
Первая производная [src]
    /    pi\
-sin|x - --|
    \    3 /
$$- \sin{\left(x - \frac{\pi}{3} \right)}$$
Вторая производная [src]
    /    pi\
-sin|x + --|
    \    6 /
$$- \sin{\left(x + \frac{\pi}{6} \right)}$$
Третья производная [src]
    /    pi\
-cos|x + --|
    \    6 /
$$- \cos{\left(x + \frac{\pi}{6} \right)}$$
График
Производная cos(x-pi/3) /media/krcore-image-pods/hash/derivative/f/05/29fe32eeb99fa796403e8496573e4.png