Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
log(x) /log(cos(x + 2)) log(x)*sin(x + 2)\
cos (x + 2)*|--------------- - -----------------|
\ x cos(x + 2) /
$$\left(- \frac{\log{\left (x \right )} \sin{\left (x + 2 \right )}}{\cos{\left (x + 2 \right )}} + \frac{1}{x} \log{\left (\cos{\left (x + 2 \right )} \right )}\right) \cos^{\log{\left (x \right )}}{\left (x + 2 \right )}$$
/ 2 2 \
log(x) |/ log(cos(2 + x)) log(x)*sin(2 + x)\ log(cos(2 + x)) sin (2 + x)*log(x) 2*sin(2 + x)|
cos (2 + x)*||- --------------- + -----------------| - log(x) - --------------- - ------------------ - ------------|
|\ x cos(2 + x) / 2 2 x*cos(2 + x)|
\ x cos (2 + x) /
$$\left(\left(\frac{\log{\left (x \right )} \sin{\left (x + 2 \right )}}{\cos{\left (x + 2 \right )}} - \frac{1}{x} \log{\left (\cos{\left (x + 2 \right )} \right )}\right)^{2} - \frac{\log{\left (x \right )} \sin^{2}{\left (x + 2 \right )}}{\cos^{2}{\left (x + 2 \right )}} - \log{\left (x \right )} - \frac{2 \sin{\left (x + 2 \right )}}{x \cos{\left (x + 2 \right )}} - \frac{1}{x^{2}} \log{\left (\cos{\left (x + 2 \right )} \right )}\right) \cos^{\log{\left (x \right )}}{\left (x + 2 \right )}$$
/ 3 / 2 \ 2 3 \
log(x) | / log(cos(2 + x)) log(x)*sin(2 + x)\ 3 2*log(cos(2 + x)) / log(cos(2 + x)) log(x)*sin(2 + x)\ |log(cos(2 + x)) sin (2 + x)*log(x) 2*sin(2 + x) | 3*sin (2 + x) 2*log(x)*sin(2 + x) 2*sin (2 + x)*log(x) 3*sin(2 + x)|
cos (2 + x)*|- |- --------------- + -----------------| - - + ----------------- + 3*|- --------------- + -----------------|*|--------------- + ------------------ + ------------ + log(x)| - ------------- - ------------------- - -------------------- + -------------|
| \ x cos(2 + x) / x 3 \ x cos(2 + x) / | 2 2 x*cos(2 + x) | 2 cos(2 + x) 3 2 |
\ x \ x cos (2 + x) / x*cos (2 + x) cos (2 + x) x *cos(2 + x)/
$$\left(- \left(\frac{\log{\left (x \right )} \sin{\left (x + 2 \right )}}{\cos{\left (x + 2 \right )}} - \frac{1}{x} \log{\left (\cos{\left (x + 2 \right )} \right )}\right)^{3} + 3 \left(\frac{\log{\left (x \right )} \sin{\left (x + 2 \right )}}{\cos{\left (x + 2 \right )}} - \frac{1}{x} \log{\left (\cos{\left (x + 2 \right )} \right )}\right) \left(\frac{\log{\left (x \right )} \sin^{2}{\left (x + 2 \right )}}{\cos^{2}{\left (x + 2 \right )}} + \log{\left (x \right )} + \frac{2 \sin{\left (x + 2 \right )}}{x \cos{\left (x + 2 \right )}} + \frac{1}{x^{2}} \log{\left (\cos{\left (x + 2 \right )} \right )}\right) - \frac{2 \log{\left (x \right )} \sin^{3}{\left (x + 2 \right )}}{\cos^{3}{\left (x + 2 \right )}} - \frac{2 \log{\left (x \right )} \sin{\left (x + 2 \right )}}{\cos{\left (x + 2 \right )}} - \frac{3 \sin^{2}{\left (x + 2 \right )}}{x \cos^{2}{\left (x + 2 \right )}} - \frac{3}{x} + \frac{3 \sin{\left (x + 2 \right )}}{x^{2} \cos{\left (x + 2 \right )}} + \frac{2}{x^{3}} \log{\left (\cos{\left (x + 2 \right )} \right )}\right) \cos^{\log{\left (x \right )}}{\left (x + 2 \right )}$$