Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
acot(x) / log(cos(x)) acot(x)*sin(x)\
cos (x)*|- ----------- - --------------|
| 2 cos(x) |
\ 1 + x /
$$\left(- \frac{\sin{\left (x \right )} \operatorname{acot}{\left (x \right )}}{\cos{\left (x \right )}} - \frac{1}{x^{2} + 1} \log{\left (\cos{\left (x \right )} \right )}\right) \cos^{\operatorname{acot}{\left (x \right )}}{\left (x \right )}$$
/ 2 2 \
acot(x) |/log(cos(x)) acot(x)*sin(x)\ sin (x)*acot(x) 2*x*log(cos(x)) 2*sin(x) |
cos (x)*||----------- + --------------| - acot(x) - --------------- + --------------- + ---------------|
|| 2 cos(x) | 2 2 / 2\ |
|\ 1 + x / cos (x) / 2\ \1 + x /*cos(x)|
\ \1 + x / /
$$\left(\frac{2 x}{\left(x^{2} + 1\right)^{2}} \log{\left (\cos{\left (x \right )} \right )} + \left(\frac{\sin{\left (x \right )} \operatorname{acot}{\left (x \right )}}{\cos{\left (x \right )}} + \frac{1}{x^{2} + 1} \log{\left (\cos{\left (x \right )} \right )}\right)^{2} - \frac{\sin^{2}{\left (x \right )} \operatorname{acot}{\left (x \right )}}{\cos^{2}{\left (x \right )}} - \operatorname{acot}{\left (x \right )} + \frac{2 \sin{\left (x \right )}}{\left(x^{2} + 1\right) \cos{\left (x \right )}}\right) \cos^{\operatorname{acot}{\left (x \right )}}{\left (x \right )}$$
/ 3 / 2 \ 2 3 2 \
acot(x) |/log(cos(x)) acot(x)*sin(x)\ 3 2*log(cos(x)) /log(cos(x)) acot(x)*sin(x)\ | sin (x)*acot(x) 2*x*log(cos(x)) 2*sin(x) | 3*sin (x) 2*acot(x)*sin(x) 2*sin (x)*acot(x) 8*x *log(cos(x)) 6*x*sin(x) |
-cos (x)*||----------- + --------------| - ------ - ------------- + 3*|----------- + --------------|*|-acot(x) - --------------- + --------------- + ---------------| - ---------------- + ---------------- + ----------------- + ---------------- + ----------------|
|| 2 cos(x) | 2 2 | 2 cos(x) | | 2 2 / 2\ | / 2\ 2 cos(x) 3 3 2 |
|\ 1 + x / 1 + x / 2\ \ 1 + x / | cos (x) / 2\ \1 + x /*cos(x)| \1 + x /*cos (x) cos (x) / 2\ / 2\ |
\ \1 + x / \ \1 + x / / \1 + x / \1 + x / *cos(x)/
$$- \left(\frac{8 x^{2}}{\left(x^{2} + 1\right)^{3}} \log{\left (\cos{\left (x \right )} \right )} + \frac{6 x \sin{\left (x \right )}}{\left(x^{2} + 1\right)^{2} \cos{\left (x \right )}} + \left(\frac{\sin{\left (x \right )} \operatorname{acot}{\left (x \right )}}{\cos{\left (x \right )}} + \frac{1}{x^{2} + 1} \log{\left (\cos{\left (x \right )} \right )}\right)^{3} + 3 \left(\frac{\sin{\left (x \right )} \operatorname{acot}{\left (x \right )}}{\cos{\left (x \right )}} + \frac{1}{x^{2} + 1} \log{\left (\cos{\left (x \right )} \right )}\right) \left(\frac{2 x}{\left(x^{2} + 1\right)^{2}} \log{\left (\cos{\left (x \right )} \right )} - \frac{\sin^{2}{\left (x \right )} \operatorname{acot}{\left (x \right )}}{\cos^{2}{\left (x \right )}} - \operatorname{acot}{\left (x \right )} + \frac{2 \sin{\left (x \right )}}{\left(x^{2} + 1\right) \cos{\left (x \right )}}\right) + \frac{2 \sin^{3}{\left (x \right )}}{\cos^{3}{\left (x \right )}} \operatorname{acot}{\left (x \right )} + \frac{2 \operatorname{acot}{\left (x \right )}}{\cos{\left (x \right )}} \sin{\left (x \right )} - \frac{3 \sin^{2}{\left (x \right )}}{\left(x^{2} + 1\right) \cos^{2}{\left (x \right )}} - \frac{3}{x^{2} + 1} - \frac{2}{\left(x^{2} + 1\right)^{2}} \log{\left (\cos{\left (x \right )} \right )}\right) \cos^{\operatorname{acot}{\left (x \right )}}{\left (x \right )}$$