Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
asin(x) /log(cos(x)) asin(x)*sin(x)\
cos (x)*|----------- - --------------|
| ________ cos(x) |
| / 2 |
\\/ 1 - x /
$$\left(- \frac{\sin{\left (x \right )} \operatorname{asin}{\left (x \right )}}{\cos{\left (x \right )}} + \frac{\log{\left (\cos{\left (x \right )} \right )}}{\sqrt{- x^{2} + 1}}\right) \cos^{\operatorname{asin}{\left (x \right )}}{\left (x \right )}$$
/ 2 2 \
asin(x) |/ log(cos(x)) asin(x)*sin(x)\ x*log(cos(x)) sin (x)*asin(x) 2*sin(x) |
cos (x)*||- ----------- + --------------| - asin(x) + ------------- - --------------- - ------------------|
|| ________ cos(x) | 3/2 2 ________ |
|| / 2 | / 2\ cos (x) / 2 |
\\ \/ 1 - x / \1 - x / \/ 1 - x *cos(x)/
$$\left(\frac{x \log{\left (\cos{\left (x \right )} \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \left(\frac{\sin{\left (x \right )} \operatorname{asin}{\left (x \right )}}{\cos{\left (x \right )}} - \frac{\log{\left (\cos{\left (x \right )} \right )}}{\sqrt{- x^{2} + 1}}\right)^{2} - \frac{\sin^{2}{\left (x \right )} \operatorname{asin}{\left (x \right )}}{\cos^{2}{\left (x \right )}} - \operatorname{asin}{\left (x \right )} - \frac{2 \sin{\left (x \right )}}{\sqrt{- x^{2} + 1} \cos{\left (x \right )}}\right) \cos^{\operatorname{asin}{\left (x \right )}}{\left (x \right )}$$
/ 3 / 2 \ 2 3 2 \
asin(x) | / log(cos(x)) asin(x)*sin(x)\ 3 log(cos(x)) / log(cos(x)) asin(x)*sin(x)\ |sin (x)*asin(x) x*log(cos(x)) 2*sin(x) | 3*sin (x) 2*asin(x)*sin(x) 2*sin (x)*asin(x) 3*x *log(cos(x)) 3*x*sin(x) |
cos (x)*|- |- ----------- + --------------| - ----------- + ----------- + 3*|- ----------- + --------------|*|--------------- - ------------- + ------------------ + asin(x)| - ------------------- - ---------------- - ----------------- + ---------------- - ------------------|
| | ________ cos(x) | ________ 3/2 | ________ cos(x) | | 2 3/2 ________ | ________ cos(x) 3 5/2 3/2 |
| | / 2 | / 2 / 2\ | / 2 | | cos (x) / 2\ / 2 | / 2 2 cos (x) / 2\ / 2\ |
\ \ \/ 1 - x / \/ 1 - x \1 - x / \ \/ 1 - x / \ \1 - x / \/ 1 - x *cos(x) / \/ 1 - x *cos (x) \1 - x / \1 - x / *cos(x)/
$$\left(\frac{3 x^{2}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} \log{\left (\cos{\left (x \right )} \right )} - \frac{3 x \sin{\left (x \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \cos{\left (x \right )}} - \left(\frac{\sin{\left (x \right )} \operatorname{asin}{\left (x \right )}}{\cos{\left (x \right )}} - \frac{\log{\left (\cos{\left (x \right )} \right )}}{\sqrt{- x^{2} + 1}}\right)^{3} + 3 \left(\frac{\sin{\left (x \right )} \operatorname{asin}{\left (x \right )}}{\cos{\left (x \right )}} - \frac{\log{\left (\cos{\left (x \right )} \right )}}{\sqrt{- x^{2} + 1}}\right) \left(- \frac{x \log{\left (\cos{\left (x \right )} \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \frac{\sin^{2}{\left (x \right )} \operatorname{asin}{\left (x \right )}}{\cos^{2}{\left (x \right )}} + \operatorname{asin}{\left (x \right )} + \frac{2 \sin{\left (x \right )}}{\sqrt{- x^{2} + 1} \cos{\left (x \right )}}\right) - \frac{2 \sin^{3}{\left (x \right )}}{\cos^{3}{\left (x \right )}} \operatorname{asin}{\left (x \right )} - \frac{2 \operatorname{asin}{\left (x \right )}}{\cos{\left (x \right )}} \sin{\left (x \right )} - \frac{3 \sin^{2}{\left (x \right )}}{\sqrt{- x^{2} + 1} \cos^{2}{\left (x \right )}} - \frac{3}{\sqrt{- x^{2} + 1}} + \frac{\log{\left (\cos{\left (x \right )} \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}}\right) \cos^{\operatorname{asin}{\left (x \right )}}{\left (x \right )}$$