Производная cos(x)^(2)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   2   
cos (x)
cos2(x)\cos^{2}{\left(x \right)}
d /   2   \
--\cos (x)/
dx         
ddxcos2(x)\frac{d}{d x} \cos^{2}{\left(x \right)}
Подробное решение
  1. Заменим u=cos(x)u = \cos{\left(x \right)}.

  2. В силу правила, применим: u2u^{2} получим 2u2 u

  3. Затем примените цепочку правил. Умножим на ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

    1. Производная косинус есть минус синус:

      ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

    В результате последовательности правил:

    2sin(x)cos(x)- 2 \sin{\left(x \right)} \cos{\left(x \right)}

  4. Теперь упростим:

    sin(2x)- \sin{\left(2 x \right)}


Ответ:

sin(2x)- \sin{\left(2 x \right)}

График
02468-8-6-4-2-10102-2
Первая производная [src]
-2*cos(x)*sin(x)
2sin(x)cos(x)- 2 \sin{\left(x \right)} \cos{\left(x \right)}
Вторая производная [src]
  /   2         2   \
2*\sin (x) - cos (x)/
2(sin2(x)cos2(x))2 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)
Третья производная [src]
8*cos(x)*sin(x)
8sin(x)cos(x)8 \sin{\left(x \right)} \cos{\left(x \right)}
График
Производная cos(x)^(2) /media/krcore-image-pods/hash/derivative/8/06/adc651deeb020c321a1379adde13f.png