Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
x / x*sin(x) \
cos (x)*|- -------- + log(cos(x))|
\ cos(x) /
$$\left(- \frac{x \sin{\left (x \right )}}{\cos{\left (x \right )}} + \log{\left (\cos{\left (x \right )} \right )}\right) \cos^{x}{\left (x \right )}$$
/ 2 2 \
x |/ x*sin(x)\ 2*sin(x) x*sin (x)|
cos (x)*||-log(cos(x)) + --------| - x - -------- - ---------|
|\ cos(x) / cos(x) 2 |
\ cos (x) /
$$\left(- \frac{x \sin^{2}{\left (x \right )}}{\cos^{2}{\left (x \right )}} - x + \left(\frac{x \sin{\left (x \right )}}{\cos{\left (x \right )}} - \log{\left (\cos{\left (x \right )} \right )}\right)^{2} - \frac{2 \sin{\left (x \right )}}{\cos{\left (x \right )}}\right) \cos^{x}{\left (x \right )}$$
/ 3 2 / 2 \ 3 \
x | / x*sin(x)\ 3*sin (x) / x*sin(x)\ | 2*sin(x) x*sin (x)| 2*x*sin(x) 2*x*sin (x)|
cos (x)*|-3 - |-log(cos(x)) + --------| - --------- + 3*|-log(cos(x)) + --------|*|x + -------- + ---------| - ---------- - -----------|
| \ cos(x) / 2 \ cos(x) / | cos(x) 2 | cos(x) 3 |
\ cos (x) \ cos (x) / cos (x) /
$$\left(- \frac{2 x \sin^{3}{\left (x \right )}}{\cos^{3}{\left (x \right )}} - \frac{2 x \sin{\left (x \right )}}{\cos{\left (x \right )}} - \left(\frac{x \sin{\left (x \right )}}{\cos{\left (x \right )}} - \log{\left (\cos{\left (x \right )} \right )}\right)^{3} + 3 \left(\frac{x \sin{\left (x \right )}}{\cos{\left (x \right )}} - \log{\left (\cos{\left (x \right )} \right )}\right) \left(\frac{x \sin^{2}{\left (x \right )}}{\cos^{2}{\left (x \right )}} + x + \frac{2 \sin{\left (x \right )}}{\cos{\left (x \right )}}\right) - \frac{3 \sin^{2}{\left (x \right )}}{\cos^{2}{\left (x \right )}} - 3\right) \cos^{x}{\left (x \right )}$$