Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
/ 2\ / 2 \
\x / | x *sin(x)|
(cos(x)) *|2*x*log(cos(x)) - ---------|
\ cos(x) /
$$\left(- \frac{x^{2} \sin{\left (x \right )}}{\cos{\left (x \right )}} + 2 x \log{\left (\cos{\left (x \right )} \right )}\right) \cos^{x^{2}}{\left (x \right )}$$
/ 2\ / 2 2 2 \
\x / | 2 2 / x*sin(x)\ x *sin (x) 4*x*sin(x)|
(cos(x)) *|- x + 2*log(cos(x)) + x *|-2*log(cos(x)) + --------| - ---------- - ----------|
| \ cos(x) / 2 cos(x) |
\ cos (x) /
$$\left(x^{2} \left(\frac{x \sin{\left (x \right )}}{\cos{\left (x \right )}} - 2 \log{\left (\cos{\left (x \right )} \right )}\right)^{2} - \frac{x^{2} \sin^{2}{\left (x \right )}}{\cos^{2}{\left (x \right )}} - x^{2} - \frac{4 x \sin{\left (x \right )}}{\cos{\left (x \right )}} + 2 \log{\left (\cos{\left (x \right )} \right )}\right) \cos^{x^{2}}{\left (x \right )}$$
/ 2\ / 3 2 2 2 3 / 2 2 \\
\x / | 3 / x*sin(x)\ 6*sin(x) 6*x*sin (x) 2*x *sin(x) 2*x *sin (x) / x*sin(x)\ | 2 x *sin (x) 4*x*sin(x)||
(cos(x)) *|-6*x - x *|-2*log(cos(x)) + --------| - -------- - ----------- - ----------- - ------------ + 3*x*|-2*log(cos(x)) + --------|*|x - 2*log(cos(x)) + ---------- + ----------||
| \ cos(x) / cos(x) 2 cos(x) 3 \ cos(x) / | 2 cos(x) ||
\ cos (x) cos (x) \ cos (x) //
$$\left(- x^{3} \left(\frac{x \sin{\left (x \right )}}{\cos{\left (x \right )}} - 2 \log{\left (\cos{\left (x \right )} \right )}\right)^{3} - \frac{2 x^{2} \sin^{3}{\left (x \right )}}{\cos^{3}{\left (x \right )}} - \frac{2 x^{2} \sin{\left (x \right )}}{\cos{\left (x \right )}} + 3 x \left(\frac{x \sin{\left (x \right )}}{\cos{\left (x \right )}} - 2 \log{\left (\cos{\left (x \right )} \right )}\right) \left(\frac{x^{2} \sin^{2}{\left (x \right )}}{\cos^{2}{\left (x \right )}} + x^{2} + \frac{4 x \sin{\left (x \right )}}{\cos{\left (x \right )}} - 2 \log{\left (\cos{\left (x \right )} \right )}\right) - \frac{6 x \sin^{2}{\left (x \right )}}{\cos^{2}{\left (x \right )}} - 6 x - \frac{6 \sin{\left (x \right )}}{\cos{\left (x \right )}}\right) \cos^{x^{2}}{\left (x \right )}$$