x cot (2)
ddxcotx(2)=(log(−cot(2))+iπ)cotx(2)\frac{d}{d x} \cot^{x}{\left (2 \right )} = \left(\log{\left (- \cot{\left (2 \right )} \right )} + i \pi\right) \cot^{x}{\left (2 \right )}dxdcotx(2)=(log(−cot(2))+iπ)cotx(2)
Ответ:
(log(−cot(2))+iπ)cotx(2)\left(\log{\left (- \cot{\left (2 \right )} \right )} + i \pi\right) \cot^{x}{\left (2 \right )}(log(−cot(2))+iπ)cotx(2)
x cot (2)*(pi*I + log(-cot(2)))
2 x (pi*I + log(-cot(2))) *cot (2)
3 x (pi*I + log(-cot(2))) *cot (2)