Найти производную y' = f'(x) = cot(x/3) (котангенс от (х делить на 3)) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная cot(x/3)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   /x\
cot|-|
   \3/
$$\cot{\left(\frac{x}{3} \right)}$$
d /   /x\\
--|cot|-||
dx\   \3//
$$\frac{d}{d x} \cot{\left(\frac{x}{3} \right)}$$
Подробное решение
  1. Есть несколько способов вычислить эту производную.

    Method #1

    1. Перепишем функции, чтобы дифференцировать:

    2. Заменим .

    3. В силу правила, применим: получим

    4. Затем примените цепочку правил. Умножим на :

      1. Перепишем функции, чтобы дифференцировать:

      2. Применим правило производной частного:

        и .

        Чтобы найти :

        1. Заменим .

        2. Производная синуса есть косинус:

        3. Затем примените цепочку правил. Умножим на :

          1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

            1. В силу правила, применим: получим

            Таким образом, в результате:

          В результате последовательности правил:

        Чтобы найти :

        1. Заменим .

        2. Производная косинус есть минус синус:

        3. Затем примените цепочку правил. Умножим на :

          1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

            1. В силу правила, применим: получим

            Таким образом, в результате:

          В результате последовательности правил:

        Теперь применим правило производной деления:

      В результате последовательности правил:

    Method #2

    1. Перепишем функции, чтобы дифференцировать:

    2. Применим правило производной частного:

      и .

      Чтобы найти :

      1. Заменим .

      2. Производная косинус есть минус синус:

      3. Затем примените цепочку правил. Умножим на :

        1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

          1. В силу правила, применим: получим

          Таким образом, в результате:

        В результате последовательности правил:

      Чтобы найти :

      1. Заменим .

      2. Производная синуса есть косинус:

      3. Затем примените цепочку правил. Умножим на :

        1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

          1. В силу правила, применим: получим

          Таким образом, в результате:

        В результате последовательности правил:

      Теперь применим правило производной деления:

  2. Теперь упростим:


Ответ:

График
Первая производная [src]
         2/x\
      cot |-|
  1       \3/
- - - -------
  3      3   
$$- \frac{\cot^{2}{\left(\frac{x}{3} \right)}}{3} - \frac{1}{3}$$
Вторая производная [src]
  /       2/x\\    /x\
2*|1 + cot |-||*cot|-|
  \        \3//    \3/
----------------------
          9           
$$\frac{2 \left(\cot^{2}{\left(\frac{x}{3} \right)} + 1\right) \cot{\left(\frac{x}{3} \right)}}{9}$$
Третья производная [src]
   /       2/x\\ /         2/x\\
-2*|1 + cot |-||*|1 + 3*cot |-||
   \        \3// \          \3//
--------------------------------
               27               
$$- \frac{2 \left(\cot^{2}{\left(\frac{x}{3} \right)} + 1\right) \left(3 \cot^{2}{\left(\frac{x}{3} \right)} + 1\right)}{27}$$
График
Производная cot(x/3) /media/krcore-image-pods/hash/derivative/b/54/e13434f5a499d2201fe4290c51499.png