Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
/ / 2 \\
6*x | 6*x*\-1 - cot (x)/|
cot (x)*|6*log(cot(x)) + ------------------|
\ cot(x) /
$$\left(\frac{6 x}{\cot{\left (x \right )}} \left(- \cot^{2}{\left (x \right )} - 1\right) + 6 \log{\left (\cot{\left (x \right )} \right )}\right) \cot^{6 x}{\left (x \right )}$$
/ 2 \
| / / 2 \\ / / 2 \\|
6*x | | x*\1 + cot (x)/| / 2 \ | 2 x*\1 + cot (x)/||
6*cot (x)*|6*|-log(cot(x)) + ---------------| - \1 + cot (x)/*|-2*x + ------ + ---------------||
| \ cot(x) / | cot(x) 2 ||
\ \ cot (x) //
$$6 \left(6 \left(\frac{x \left(\cot^{2}{\left (x \right )} + 1\right)}{\cot{\left (x \right )}} - \log{\left (\cot{\left (x \right )} \right )}\right)^{2} - \left(\cot^{2}{\left (x \right )} + 1\right) \left(\frac{x \left(\cot^{2}{\left (x \right )} + 1\right)}{\cot^{2}{\left (x \right )}} - 2 x + \frac{2}{\cot{\left (x \right )}}\right)\right) \cot^{6 x}{\left (x \right )}$$
/ 3 2 3 2 \
| / / 2 \\ / 2 \ / 2 \ / 2 \ / / 2 \\ / / 2 \\|
6*x | | x*\1 + cot (x)/| 2 3*\1 + cot (x)/ / 2 \ 2*x*\1 + cot (x)/ 4*x*\1 + cot (x)/ / 2 \ | x*\1 + cot (x)/| | 2 x*\1 + cot (x)/||
6*cot (x)*|6 - 36*|-log(cot(x)) + ---------------| + 6*cot (x) - ---------------- - 4*x*\1 + cot (x)/*cot(x) - ------------------ + ------------------ + 18*\1 + cot (x)/*|-log(cot(x)) + ---------------|*|-2*x + ------ + ---------------||
| \ cot(x) / 2 3 cot(x) \ cot(x) / | cot(x) 2 ||
\ cot (x) cot (x) \ cot (x) //
$$6 \left(- \frac{2 x \left(\cot^{2}{\left (x \right )} + 1\right)^{3}}{\cot^{3}{\left (x \right )}} + \frac{4 x \left(\cot^{2}{\left (x \right )} + 1\right)^{2}}{\cot{\left (x \right )}} - 4 x \left(\cot^{2}{\left (x \right )} + 1\right) \cot{\left (x \right )} - 36 \left(\frac{x \left(\cot^{2}{\left (x \right )} + 1\right)}{\cot{\left (x \right )}} - \log{\left (\cot{\left (x \right )} \right )}\right)^{3} + 18 \left(\frac{x \left(\cot^{2}{\left (x \right )} + 1\right)}{\cot{\left (x \right )}} - \log{\left (\cot{\left (x \right )} \right )}\right) \left(\cot^{2}{\left (x \right )} + 1\right) \left(\frac{x \left(\cot^{2}{\left (x \right )} + 1\right)}{\cot^{2}{\left (x \right )}} - 2 x + \frac{2}{\cot{\left (x \right )}}\right) - \frac{3 \left(\cot^{2}{\left (x \right )} + 1\right)^{2}}{\cot^{2}{\left (x \right )}} + 6 \cot^{2}{\left (x \right )} + 6\right) \cot^{6 x}{\left (x \right )}$$