Производная cot(x)^3

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   3   
cot (x)
cot3(x)\cot^{3}{\left(x \right)}
d /   3   \
--\cot (x)/
dx         
ddxcot3(x)\frac{d}{d x} \cot^{3}{\left(x \right)}
Подробное решение
  1. Заменим u=cot(x)u = \cot{\left(x \right)}.

  2. В силу правила, применим: u3u^{3} получим 3u23 u^{2}

  3. Затем примените цепочку правил. Умножим на ddxcot(x)\frac{d}{d x} \cot{\left(x \right)}:

    1. Есть несколько способов вычислить эту производную.

      Method #1

      1. Перепишем функции, чтобы дифференцировать:

        cot(x)=1tan(x)\cot{\left(x \right)} = \frac{1}{\tan{\left(x \right)}}

      2. Заменим u=tan(x)u = \tan{\left(x \right)}.

      3. В силу правила, применим: 1u\frac{1}{u} получим 1u2- \frac{1}{u^{2}}

      4. Затем примените цепочку правил. Умножим на ddxtan(x)\frac{d}{d x} \tan{\left(x \right)}:

        1. Перепишем функции, чтобы дифференцировать:

          tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

        2. Применим правило производной частного:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} и g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

          Чтобы найти ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. Производная синуса есть косинус:

            ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

          Чтобы найти ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. Производная косинус есть минус синус:

            ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

          Теперь применим правило производной деления:

          sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

        В результате последовательности правил:

        sin2(x)+cos2(x)cos2(x)tan2(x)- \frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}}

      Method #2

      1. Перепишем функции, чтобы дифференцировать:

        cot(x)=cos(x)sin(x)\cot{\left(x \right)} = \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}

      2. Применим правило производной частного:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=cos(x)f{\left(x \right)} = \cos{\left(x \right)} и g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}.

        Чтобы найти ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Производная косинус есть минус синус:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        Чтобы найти ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Производная синуса есть косинус:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        Теперь применим правило производной деления:

        sin2(x)cos2(x)sin2(x)\frac{- \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}

    В результате последовательности правил:

    3(sin2(x)+cos2(x))cot2(x)cos2(x)tan2(x)- \frac{3 \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) \cot^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}}

  4. Теперь упростим:

    3cos2(x)sin4(x)- \frac{3 \cos^{2}{\left(x \right)}}{\sin^{4}{\left(x \right)}}


Ответ:

3cos2(x)sin4(x)- \frac{3 \cos^{2}{\left(x \right)}}{\sin^{4}{\left(x \right)}}

График
02468-8-6-4-2-1010-500000000250000000
Первая производная [src]
   2    /          2   \
cot (x)*\-3 - 3*cot (x)/
(3cot2(x)3)cot2(x)\left(- 3 \cot^{2}{\left(x \right)} - 3\right) \cot^{2}{\left(x \right)}
Вторая производная [src]
  /       2   \ /         2   \       
6*\1 + cot (x)/*\1 + 2*cot (x)/*cot(x)
6(cot2(x)+1)(2cot2(x)+1)cot(x)6 \left(\cot^{2}{\left(x \right)} + 1\right) \left(2 \cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}
Третья производная [src]
                 /             2                                      \
   /       2   \ |/       2   \         4           2    /       2   \|
-6*\1 + cot (x)/*\\1 + cot (x)/  + 2*cot (x) + 7*cot (x)*\1 + cot (x)//
6(cot2(x)+1)((cot2(x)+1)2+7(cot2(x)+1)cot2(x)+2cot4(x))- 6 \left(\cot^{2}{\left(x \right)} + 1\right) \left(\left(\cot^{2}{\left(x \right)} + 1\right)^{2} + 7 \left(\cot^{2}{\left(x \right)} + 1\right) \cot^{2}{\left(x \right)} + 2 \cot^{4}{\left(x \right)}\right)
График
Производная cot(x)^3 /media/krcore-image-pods/hash/derivative/6/dd/a00f8f9c90feb64df62479f901f0f.png