Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
/ / 2 \ \
x |x*\-1 - cot (x)/ |
cot (x)*|---------------- + log(cot(x))|
\ cot(x) /
$$\left(\frac{x \left(- \cot^{2}{\left (x \right )} - 1\right)}{\cot{\left (x \right )}} + \log{\left (\cot{\left (x \right )} \right )}\right) \cot^{x}{\left (x \right )}$$
/ 2 \
|/ / 2 \\ / / 2 \\|
x || x*\1 + cot (x)/| / 2 \ | 2 x*\1 + cot (x)/||
cot (x)*||-log(cot(x)) + ---------------| - \1 + cot (x)/*|-2*x + ------ + ---------------||
|\ cot(x) / | cot(x) 2 ||
\ \ cot (x) //
$$\left(\left(\frac{x \left(\cot^{2}{\left (x \right )} + 1\right)}{\cot{\left (x \right )}} - \log{\left (\cot{\left (x \right )} \right )}\right)^{2} - \left(\cot^{2}{\left (x \right )} + 1\right) \left(\frac{x \left(\cot^{2}{\left (x \right )} + 1\right)}{\cot^{2}{\left (x \right )}} - 2 x + \frac{2}{\cot{\left (x \right )}}\right)\right) \cot^{x}{\left (x \right )}$$
/ 3 2 3 2\
| / / 2 \\ / 2 \ / 2 \ / / 2 \\ / / 2 \\ / 2 \ |
x | | x*\1 + cot (x)/| 2 3*\1 + cot (x)/ / 2 \ 2*x*\1 + cot (x)/ / 2 \ | x*\1 + cot (x)/| | 2 x*\1 + cot (x)/| 4*x*\1 + cot (x)/ |
cot (x)*|6 - |-log(cot(x)) + ---------------| + 6*cot (x) - ---------------- - 4*x*\1 + cot (x)/*cot(x) - ------------------ + 3*\1 + cot (x)/*|-log(cot(x)) + ---------------|*|-2*x + ------ + ---------------| + ------------------|
| \ cot(x) / 2 3 \ cot(x) / | cot(x) 2 | cot(x) |
\ cot (x) cot (x) \ cot (x) / /
$$\left(- \frac{2 x \left(\cot^{2}{\left (x \right )} + 1\right)^{3}}{\cot^{3}{\left (x \right )}} + \frac{4 x \left(\cot^{2}{\left (x \right )} + 1\right)^{2}}{\cot{\left (x \right )}} - 4 x \left(\cot^{2}{\left (x \right )} + 1\right) \cot{\left (x \right )} - \left(\frac{x \left(\cot^{2}{\left (x \right )} + 1\right)}{\cot{\left (x \right )}} - \log{\left (\cot{\left (x \right )} \right )}\right)^{3} + 3 \left(\frac{x \left(\cot^{2}{\left (x \right )} + 1\right)}{\cot{\left (x \right )}} - \log{\left (\cot{\left (x \right )} \right )}\right) \left(\cot^{2}{\left (x \right )} + 1\right) \left(\frac{x \left(\cot^{2}{\left (x \right )} + 1\right)}{\cot^{2}{\left (x \right )}} - 2 x + \frac{2}{\cot{\left (x \right )}}\right) - \frac{3 \left(\cot^{2}{\left (x \right )} + 1\right)^{2}}{\cot^{2}{\left (x \right )}} + 6 \cot^{2}{\left (x \right )} + 6\right) \cot^{x}{\left (x \right )}$$