Найти производную y' = f'(x) = sqrt(tan(x)) (квадратный корень из (тангенс от (х))) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная sqrt(tan(x))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
  ________
\/ tan(x) 
$$\sqrt{\tan{\left(x \right)}}$$
d /  ________\
--\\/ tan(x) /
dx            
$$\frac{d}{d x} \sqrt{\tan{\left(x \right)}}$$
Подробное решение
  1. Заменим .

  2. В силу правила, применим: получим

  3. Затем примените цепочку правил. Умножим на :

    1. Перепишем функции, чтобы дифференцировать:

    2. Применим правило производной частного:

      и .

      Чтобы найти :

      1. Производная синуса есть косинус:

      Чтобы найти :

      1. Производная косинус есть минус синус:

      Теперь применим правило производной деления:

    В результате последовательности правил:

  4. Теперь упростим:


Ответ:

График
Первая производная [src]
       2   
1   tan (x)
- + -------
2      2   
-----------
   ________
 \/ tan(x) 
$$\frac{\frac{\tan^{2}{\left(x \right)}}{2} + \frac{1}{2}}{\sqrt{\tan{\left(x \right)}}}$$
Вторая производная [src]
/       2   \ /                      2   \
|1   tan (x)| |    ________   1 + tan (x)|
|- + -------|*|4*\/ tan(x)  - -----------|
\4      4   / |                   3/2    |
              \                tan   (x) /
$$\left(- \frac{\tan^{2}{\left(x \right)} + 1}{\tan^{\frac{3}{2}}{\left(x \right)}} + 4 \sqrt{\tan{\left(x \right)}}\right) \left(\frac{\tan^{2}{\left(x \right)}}{4} + \frac{1}{4}\right)$$
Третья производная [src]
              /                                                2\
/       2   \ |                 /       2   \     /       2   \ |
|1   tan (x)| |      3/2      4*\1 + tan (x)/   3*\1 + tan (x)/ |
|- + -------|*|16*tan   (x) - --------------- + ----------------|
\8      8   / |                    ________           5/2       |
              \                  \/ tan(x)         tan   (x)    /
$$\left(\frac{\tan^{2}{\left(x \right)}}{8} + \frac{1}{8}\right) \left(\frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{\frac{5}{2}}{\left(x \right)}} - \frac{4 \left(\tan^{2}{\left(x \right)} + 1\right)}{\sqrt{\tan{\left(x \right)}}} + 16 \tan^{\frac{3}{2}}{\left(x \right)}\right)$$
График
Производная sqrt(tan(x)) /media/krcore-image-pods/hash/derivative/9/01/b2b82b6df4a4cddb3dc1b8bdf2686.png