Найти производную y' = f'(x) = sqrt(y) (квадратный корень из (у)) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная sqrt(y)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
  ___
\/ y 
$$\sqrt{y}$$
d /  ___\
--\\/ y /
dy       
$$\frac{d}{d y} \sqrt{y}$$
Подробное решение
  1. В силу правила, применим: получим


Ответ:

График
Первая производная [src]
   1   
-------
    ___
2*\/ y 
$$\frac{1}{2 \sqrt{y}}$$
Вторая производная [src]
 -1   
------
   3/2
4*y   
$$- \frac{1}{4 y^{\frac{3}{2}}}$$
Третья производная [src]
  3   
------
   5/2
8*y   
$$\frac{3}{8 y^{\frac{5}{2}}}$$
График
Производная sqrt(y) /media/krcore-image-pods/hash/derivative/7/0a/a0a72c60daaa2a9c63085c2ef9fb0.png