Найти производную y' = f'(x) = sqrt(x)/x (квадратный корень из (х) делить на х) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная sqrt(x)/x

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
  ___
\/ x 
-----
  x  
$$\frac{\sqrt{x}}{x}$$
Подробное решение
  1. Применим правило производной частного:

    и .

    Чтобы найти :

    1. В силу правила, применим: получим

    Чтобы найти :

    1. В силу правила, применим: получим

    Теперь применим правило производной деления:


Ответ:

График
Первая производная [src]
 -1   
------
   3/2
2*x   
$$- \frac{1}{2 x^{\frac{3}{2}}}$$
Вторая производная [src]
  3   
------
   5/2
4*x   
$$\frac{3}{4 x^{\frac{5}{2}}}$$
Третья производная [src]
 -15  
------
   7/2
8*x   
$$- \frac{15}{8 x^{\frac{7}{2}}}$$