-2*log(acos(x))
-------------------
________
/ 2
\/ 1 - x *acos(x)
$$- \frac{2 \log{\left (\operatorname{acos}{\left (x \right )} \right )}}{\sqrt{- x^{2} + 1} \operatorname{acos}{\left (x \right )}}$$
/ 1 log(acos(x)) x*log(acos(x))\
2*|- ----------------- + ----------------- - --------------|
| / 2\ / 2\ 3/2 |
| \-1 + x /*acos(x) \-1 + x /*acos(x) / 2\ |
\ \1 - x / /
------------------------------------------------------------
acos(x)
$$\frac{1}{\operatorname{acos}{\left (x \right )}} \left(- \frac{2 x}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} \log{\left (\operatorname{acos}{\left (x \right )} \right )} + \frac{2 \log{\left (\operatorname{acos}{\left (x \right )} \right )}}{\left(x^{2} - 1\right) \operatorname{acos}{\left (x \right )}} - \frac{2}{\left(x^{2} - 1\right) \operatorname{acos}{\left (x \right )}}\right)$$
/ 2 \
| log(acos(x)) 3 3*x *log(acos(x)) 2*log(acos(x)) 3*x 3*x*log(acos(x)) |
2*|- ------------ + -------------------- - ----------------- - -------------------- + ------------------ - ------------------|
| 3/2 3/2 5/2 3/2 2 2 |
| / 2\ / 2\ 2 / 2\ / 2\ 2 / 2\ / 2\ |
\ \1 - x / \1 - x / *acos (x) \1 - x / \1 - x / *acos (x) \-1 + x / *acos(x) \-1 + x / *acos(x)/
------------------------------------------------------------------------------------------------------------------------------
acos(x)
$$\frac{1}{\operatorname{acos}{\left (x \right )}} \left(- \frac{6 x^{2}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} \log{\left (\operatorname{acos}{\left (x \right )} \right )} - \frac{6 x \log{\left (\operatorname{acos}{\left (x \right )} \right )}}{\left(x^{2} - 1\right)^{2} \operatorname{acos}{\left (x \right )}} + \frac{6 x}{\left(x^{2} - 1\right)^{2} \operatorname{acos}{\left (x \right )}} - \frac{2 \log{\left (\operatorname{acos}{\left (x \right )} \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} - \frac{4 \log{\left (\operatorname{acos}{\left (x \right )} \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{acos}^{2}{\left (x \right )}} + \frac{6}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{acos}^{2}{\left (x \right )}}\right)$$