/ d / log(2) \\|
5*|-----|---------|||
\dxi_2\log(xi_2)//|xi_2=5*x + 3
$$5 \left. \frac{d}{d \xi_{2}}\left(\frac{\log{\left (2 \right )}}{\log{\left (\xi_{2} \right )}}\right) \right|_{\substack{ \xi_{2}=5 x + 3 }}$$
/ 2 \
25*|1 + ------------|*log(2)
\ log(3 + 5*x)/
----------------------------
2 2
(3 + 5*x) *log (3 + 5*x)
$$\frac{25 \left(1 + \frac{2}{\log{\left (5 x + 3 \right )}}\right) \log{\left (2 \right )}}{\left(5 x + 3\right)^{2} \log^{2}{\left (5 x + 3 \right )}}$$
/ 2 \
| 1 + ------------|
| 1 2 log(3 + 5*x)|
-250*|1 + ------------- + ------------ + ----------------|*log(2)
| 2 log(3 + 5*x) log(3 + 5*x) |
\ log (3 + 5*x) /
-----------------------------------------------------------------
3 2
(3 + 5*x) *log (3 + 5*x)
$$- \frac{250 \log{\left (2 \right )}}{\left(5 x + 3\right)^{3} \log^{2}{\left (5 x + 3 \right )}} \left(\frac{1 + \frac{2}{\log{\left (5 x + 3 \right )}}}{\log{\left (5 x + 3 \right )}} + 1 + \frac{2}{\log{\left (5 x + 3 \right )}} + \frac{1}{\log^{2}{\left (5 x + 3 \right )}}\right)$$