Подробное решение
Заменим .
Производная является .
Затем примените цепочку правил. Умножим на :
Не могу найти шаги в поиске этой производной.
Но производная
В результате последовательности правил:
Ответ:
/ 2 \
\-1 - cot (x)/*sin(x)
cos(x)*log(cot(x)) + ---------------------
cot(x)
$$\frac{\sin{\left (x \right )}}{\cot{\left (x \right )}} \left(- \cot^{2}{\left (x \right )} - 1\right) + \log{\left (\cot{\left (x \right )} \right )} \cos{\left (x \right )}$$
2
/ 2 \ / 2 \
/ 2 \ \1 + cot (x)/ *sin(x) 2*\1 + cot (x)/*cos(x)
-log(cot(x))*sin(x) + 2*\1 + cot (x)/*sin(x) - --------------------- - ----------------------
2 cot(x)
cot (x)
$$- \frac{\left(\cot^{2}{\left (x \right )} + 1\right)^{2}}{\cot^{2}{\left (x \right )}} \sin{\left (x \right )} + 2 \left(\cot^{2}{\left (x \right )} + 1\right) \sin{\left (x \right )} - \frac{2 \cos{\left (x \right )}}{\cot{\left (x \right )}} \left(\cot^{2}{\left (x \right )} + 1\right) - \log{\left (\cot{\left (x \right )} \right )} \sin{\left (x \right )}$$
2 3 2
/ 2 \ / 2 \ / 2 \ / 2 \
/ 2 \ / 2 \ 3*\1 + cot (x)/ *cos(x) 2*\1 + cot (x)/ *sin(x) 3*\1 + cot (x)/*sin(x) 4*\1 + cot (x)/ *sin(x)
-cos(x)*log(cot(x)) + 6*\1 + cot (x)/*cos(x) - 4*\1 + cot (x)/*cot(x)*sin(x) - ----------------------- - ----------------------- + ---------------------- + -----------------------
2 3 cot(x) cot(x)
cot (x) cot (x)
$$- \frac{2 \left(\cot^{2}{\left (x \right )} + 1\right)^{3}}{\cot^{3}{\left (x \right )}} \sin{\left (x \right )} + \frac{4 \left(\cot^{2}{\left (x \right )} + 1\right)^{2}}{\cot{\left (x \right )}} \sin{\left (x \right )} - \frac{3 \left(\cot^{2}{\left (x \right )} + 1\right)^{2}}{\cot^{2}{\left (x \right )}} \cos{\left (x \right )} - 4 \left(\cot^{2}{\left (x \right )} + 1\right) \sin{\left (x \right )} \cot{\left (x \right )} + \frac{3 \sin{\left (x \right )}}{\cot{\left (x \right )}} \left(\cot^{2}{\left (x \right )} + 1\right) + 6 \left(\cot^{2}{\left (x \right )} + 1\right) \cos{\left (x \right )} - \log{\left (\cot{\left (x \right )} \right )} \cos{\left (x \right )}$$