Производная log(1-sin(x))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
log(1 - sin(x))
log(sin(x)+1)\log{\left (- \sin{\left (x \right )} + 1 \right )}
Подробное решение
  1. Заменим u=sin(x)+1u = - \sin{\left (x \right )} + 1.

  2. Производная log(u)\log{\left (u \right )} является 1u\frac{1}{u}.

  3. Затем примените цепочку правил. Умножим на ddx(sin(x)+1)\frac{d}{d x}\left(- \sin{\left (x \right )} + 1\right):

    1. дифференцируем sin(x)+1- \sin{\left (x \right )} + 1 почленно:

      1. Производная постоянной 11 равна нулю.

      2. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. Производная синуса есть косинус:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left (x \right )} = \cos{\left (x \right )}

        Таким образом, в результате: cos(x)- \cos{\left (x \right )}

      В результате: cos(x)- \cos{\left (x \right )}

    В результате последовательности правил:

    cos(x)sin(x)+1- \frac{\cos{\left (x \right )}}{- \sin{\left (x \right )} + 1}

  4. Теперь упростим:

    cos(x)sin(x)1\frac{\cos{\left (x \right )}}{\sin{\left (x \right )} - 1}


Ответ:

cos(x)sin(x)1\frac{\cos{\left (x \right )}}{\sin{\left (x \right )} - 1}

График
02468-8-6-4-2-1010-100100
Первая производная [src]
 -cos(x)  
----------
1 - sin(x)
cos(x)sin(x)+1- \frac{\cos{\left (x \right )}}{- \sin{\left (x \right )} + 1}
Вторая производная [src]
 /     2              \ 
 |  cos (x)           | 
-|----------- + sin(x)| 
 \-1 + sin(x)         / 
------------------------
      -1 + sin(x)       
1sin(x)1(sin(x)+cos2(x)sin(x)1)- \frac{1}{\sin{\left (x \right )} - 1} \left(\sin{\left (x \right )} + \frac{\cos^{2}{\left (x \right )}}{\sin{\left (x \right )} - 1}\right)
Третья производная [src]
/            2                    \       
|       2*cos (x)        3*sin(x) |       
|-1 + -------------- + -----------|*cos(x)
|                  2   -1 + sin(x)|       
\     (-1 + sin(x))               /       
------------------------------------------
               -1 + sin(x)                
cos(x)sin(x)1(1+3sin(x)sin(x)1+2cos2(x)(sin(x)1)2)\frac{\cos{\left (x \right )}}{\sin{\left (x \right )} - 1} \left(-1 + \frac{3 \sin{\left (x \right )}}{\sin{\left (x \right )} - 1} + \frac{2 \cos^{2}{\left (x \right )}}{\left(\sin{\left (x \right )} - 1\right)^{2}}\right)