Заменим .
Производная является .
Затем примените цепочку правил. Умножим на :
Применим правило производной частного:
и .
Чтобы найти :
дифференцируем почленно:
Производная постоянной равна нулю.
Производная произведения константы на функцию есть произведение этой константы на производную данной функции.
В силу правила, применим: получим
Таким образом, в результате:
В результате:
Чтобы найти :
дифференцируем почленно:
Производная постоянной равна нулю.
В силу правила, применим: получим
В результате:
Теперь применим правило производной деления:
В результате последовательности правил:
Теперь упростим:
Ответ:
/ 1 1 - x \ (x + 1)*|- ----- - --------| | x + 1 2| \ (x + 1) / ---------------------------- 1 - x
/ -1 + x\ / 1 1 \ |-1 + ------|*|----- + ------| \ 1 + x / \1 + x -1 + x/ ------------------------------ -1 + x
/ -1 + x\ / 1 1 1 \ 2*|-1 + ------|*|- -------- - --------- - ----------------| \ 1 + x / | 2 2 (1 + x)*(-1 + x)| \ (1 + x) (-1 + x) / ----------------------------------------------------------- -1 + x