Заменим .
Производная является .
Затем примените цепочку правил. Умножим на :
Применим правило производной частного:
и .
Чтобы найти :
дифференцируем почленно:
Производная постоянной равна нулю.
В силу правила, применим: получим
В результате:
Чтобы найти :
дифференцируем почленно:
Производная постоянной равна нулю.
Производная произведения константы на функцию есть произведение этой константы на производную данной функции.
В силу правила, применим: получим
Таким образом, в результате:
В результате:
Теперь применим правило производной деления:
В результате последовательности правил:
Теперь упростим:
Ответ:
/ 1 1 + x \ (1 - x)*|----- + --------| |1 - x 2| \ (1 - x) / -------------------------- 1 + x
/ 1 + x \ / 1 1 \ |1 - ------|*|- ----- - ------| \ -1 + x/ \ 1 + x -1 + x/ ------------------------------- 1 + x
/ 1 + x \ / 1 1 1 \ 2*|1 - ------|*|-------- + --------- + ----------------| \ -1 + x/ | 2 2 (1 + x)*(-1 + x)| \(1 + x) (-1 + x) / -------------------------------------------------------- 1 + x