Подробное решение
Заменим .
Производная является .
Затем примените цепочку правил. Умножим на :
Есть несколько способов вычислить эту производную.
Один из способов:
Заменим .
Затем примените цепочку правил. Умножим на :
дифференцируем почленно:
Есть несколько способов вычислить эту производную.
Один из способов:
Производная секанса есть секанс, умноженный на тангенс:
Есть несколько способов вычислить эту производную.
Один из способов:
В результате:
В результате последовательности правил:
В результате последовательности правил:
Теперь упростим:
Ответ:
/ 2 \ / 2 \
\1 + tan (sec(x) + tan(x))/*\1 + tan (x) + sec(x)*tan(x)/
---------------------------------------------------------
tan(sec(x) + tan(x))
$$\frac{1}{\tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right) \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right)$$
/ 2 \
| 2 2 / 2 \ / 2 \ / 2 \ / 2 \|
/ 2 \ | / 2 \ tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 2*\1 + tan (x)/*tan(x) \1 + tan (x) + sec(x)*tan(x)/ *\1 + tan (sec(x) + tan(x))/|
\1 + tan (sec(x) + tan(x))/*|2*\1 + tan (x) + sec(x)*tan(x)/ + -------------------------------------------------------------- - ----------------------------------------------------------|
| tan(sec(x) + tan(x)) 2 |
\ tan (sec(x) + tan(x)) /
$$\left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right) \left(- \frac{\left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right)^{2}}{\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right) + \frac{1}{\tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(2 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} + \left(\tan^{2}{\left (x \right )} + 1\right) \sec{\left (x \right )} + \tan^{2}{\left (x \right )} \sec{\left (x \right )}\right) + 2 \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right)^{2}\right)$$
/ 2 3 2 3 \
| / 2 \ 3 2 / 2 \ / 2 \ 3 / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ / 2 / 2 \ / 2 \ \|
/ 2 \ |2*\1 + tan (x)/ + tan (x)*sec(x) + 4*tan (x)*\1 + tan (x)/ + 5*\1 + tan (x)/*sec(x)*tan(x) / 2 \ / 2 \ / 2 / 2 \ / 2 \ \ 4*\1 + tan (x) + sec(x)*tan(x)/ *\1 + tan (sec(x) + tan(x))/ 2*\1 + tan (sec(x) + tan(x))/ *\1 + tan (x) + sec(x)*tan(x)/ 3*\1 + tan (sec(x) + tan(x))/*\1 + tan (x) + sec(x)*tan(x)/*\tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 2*\1 + tan (x)/*tan(x)/|
\1 + tan (sec(x) + tan(x))/*|------------------------------------------------------------------------------------------- + 4*\1 + tan (x) + sec(x)*tan(x)/ *tan(sec(x) + tan(x)) + 6*\1 + tan (x) + sec(x)*tan(x)/*\tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 2*\1 + tan (x)/*tan(x)/ - ------------------------------------------------------------ + ------------------------------------------------------------- - ----------------------------------------------------------------------------------------------------------------------------|
| tan(sec(x) + tan(x)) tan(sec(x) + tan(x)) 3 2 |
\ tan (sec(x) + tan(x)) tan (sec(x) + tan(x)) /
$$\left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right) \left(\frac{2 \left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right)^{2}}{\tan^{3}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right)^{3} - \frac{3}{\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right) \left(2 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} + \left(\tan^{2}{\left (x \right )} + 1\right) \sec{\left (x \right )} + \tan^{2}{\left (x \right )} \sec{\left (x \right )}\right) \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right) - \frac{4 \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right)^{3}}{\tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right) + 6 \left(2 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} + \left(\tan^{2}{\left (x \right )} + 1\right) \sec{\left (x \right )} + \tan^{2}{\left (x \right )} \sec{\left (x \right )}\right) \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right) + 4 \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right)^{3} \tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + \frac{1}{\tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(2 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} + 4 \left(\tan^{2}{\left (x \right )} + 1\right) \tan^{2}{\left (x \right )} + 5 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} \sec{\left (x \right )} + \tan^{3}{\left (x \right )} \sec{\left (x \right )}\right)\right)$$