Производная log(tan(sec(x)+tan(x)))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
log(tan(sec(x) + tan(x)))
log(tan(tan(x)+sec(x)))\log{\left (\tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} \right )}
Подробное решение
  1. Заменим u=tan(tan(x)+sec(x))u = \tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}.

  2. Производная log(u)\log{\left (u \right )} является 1u\frac{1}{u}.

  3. Затем примените цепочку правил. Умножим на ddxtan(tan(x)+sec(x))\frac{d}{d x} \tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}:

    1. Есть несколько способов вычислить эту производную.

      Один из способов:

      1. Заменим u=tan(x)+sec(x)u = \tan{\left (x \right )} + \sec{\left (x \right )}.

      2. ddutan(u)=1cos2(u)\frac{d}{d u} \tan{\left (u \right )} = \frac{1}{\cos^{2}{\left (u \right )}}

      3. Затем примените цепочку правил. Умножим на ddx(tan(x)+sec(x))\frac{d}{d x}\left(\tan{\left (x \right )} + \sec{\left (x \right )}\right):

        1. дифференцируем tan(x)+sec(x)\tan{\left (x \right )} + \sec{\left (x \right )} почленно:

          1. Есть несколько способов вычислить эту производную.

            Один из способов:

            1. Производная секанса есть секанс, умноженный на тангенс:

              ddxsec(x)=tan(x)sec(x)\frac{d}{d x} \sec{\left (x \right )} = \tan{\left (x \right )} \sec{\left (x \right )}

          2. Есть несколько способов вычислить эту производную.

            Один из способов:

            1. ddxtan(x)=1cos2(x)\frac{d}{d x} \tan{\left (x \right )} = \frac{1}{\cos^{2}{\left (x \right )}}

          В результате: 1cos2(x)(sin2(x)+cos2(x))+sin(x)cos2(x)\frac{1}{\cos^{2}{\left (x \right )}} \left(\sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}\right) + \frac{\sin{\left (x \right )}}{\cos^{2}{\left (x \right )}}

        В результате последовательности правил:

        1cos2(x)(sin2(x)+cos2(x))+sin(x)cos2(x)cos2(tan(x)+sec(x))\frac{\frac{1}{\cos^{2}{\left (x \right )}} \left(\sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}\right) + \frac{\sin{\left (x \right )}}{\cos^{2}{\left (x \right )}}}{\cos^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}}

    В результате последовательности правил:

    1cos2(tan(x)+sec(x))tan(tan(x)+sec(x))((1cos2(x)(sin2(x)+cos2(x))+sin(x)cos2(x))sin2(tan(x)+sec(x))+(1cos2(x)(sin2(x)+cos2(x))+sin(x)cos2(x))cos2(tan(x)+sec(x)))\frac{1}{\cos^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} \tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(\left(\frac{1}{\cos^{2}{\left (x \right )}} \left(\sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}\right) + \frac{\sin{\left (x \right )}}{\cos^{2}{\left (x \right )}}\right) \sin^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + \left(\frac{1}{\cos^{2}{\left (x \right )}} \left(\sin^{2}{\left (x \right )} + \cos^{2}{\left (x \right )}\right) + \frac{\sin{\left (x \right )}}{\cos^{2}{\left (x \right )}}\right) \cos^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}\right)

  4. Теперь упростим:

    sin(x)+1cos2(x)cos2(tan(x)+sec(x))tan(tan(x)+sec(x))\frac{\sin{\left (x \right )} + 1}{\cos^{2}{\left (x \right )} \cos^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} \tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}}


Ответ:

sin(x)+1cos2(x)cos2(tan(x)+sec(x))tan(tan(x)+sec(x))\frac{\sin{\left (x \right )} + 1}{\cos^{2}{\left (x \right )} \cos^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} \tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}}

График
02468-8-6-4-2-1010-50005000
Первая производная [src]
/       2                 \ /       2                   \
\1 + tan (sec(x) + tan(x))/*\1 + tan (x) + sec(x)*tan(x)/
---------------------------------------------------------
                   tan(sec(x) + tan(x))                  
1tan(tan(x)+sec(x))(tan2(tan(x)+sec(x))+1)(tan2(x)+tan(x)sec(x)+1)\frac{1}{\tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right) \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right)
Вторая производная [src]
                            /                                                                                                                                 2                            \
                            |                               2      2             /       2   \            /       2   \          /       2                   \  /       2                 \|
/       2                 \ |  /       2                   \    tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 2*\1 + tan (x)/*tan(x)   \1 + tan (x) + sec(x)*tan(x)/ *\1 + tan (sec(x) + tan(x))/|
\1 + tan (sec(x) + tan(x))/*|2*\1 + tan (x) + sec(x)*tan(x)/  + -------------------------------------------------------------- - ----------------------------------------------------------|
                            |                                                        tan(sec(x) + tan(x))                                             2                                    |
                            \                                                                                                                      tan (sec(x) + tan(x))                   /
(tan2(tan(x)+sec(x))+1)((tan2(x)+tan(x)sec(x)+1)2tan2(tan(x)+sec(x))(tan2(tan(x)+sec(x))+1)+1tan(tan(x)+sec(x))(2(tan2(x)+1)tan(x)+(tan2(x)+1)sec(x)+tan2(x)sec(x))+2(tan2(x)+tan(x)sec(x)+1)2)\left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right) \left(- \frac{\left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right)^{2}}{\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right) + \frac{1}{\tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(2 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} + \left(\tan^{2}{\left (x \right )} + 1\right) \sec{\left (x \right )} + \tan^{2}{\left (x \right )} \sec{\left (x \right )}\right) + 2 \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right)^{2}\right)
Третья производная [src]
                            /               2                                                                                                                                                                                                                                                                        3                                                            2                              3                                                                                                                               \
                            |  /       2   \       3                  2    /       2   \     /       2   \                                                3                                                                                                                             /       2                   \  /       2                 \     /       2                 \  /       2                   \      /       2                 \ /       2                   \ /   2             /       2   \            /       2   \       \|
/       2                 \ |2*\1 + tan (x)/  + tan (x)*sec(x) + 4*tan (x)*\1 + tan (x)/ + 5*\1 + tan (x)/*sec(x)*tan(x)     /       2                   \                           /       2                   \ /   2             /       2   \            /       2   \       \   4*\1 + tan (x) + sec(x)*tan(x)/ *\1 + tan (sec(x) + tan(x))/   2*\1 + tan (sec(x) + tan(x))/ *\1 + tan (x) + sec(x)*tan(x)/    3*\1 + tan (sec(x) + tan(x))/*\1 + tan (x) + sec(x)*tan(x)/*\tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 2*\1 + tan (x)/*tan(x)/|
\1 + tan (sec(x) + tan(x))/*|------------------------------------------------------------------------------------------- + 4*\1 + tan (x) + sec(x)*tan(x)/ *tan(sec(x) + tan(x)) + 6*\1 + tan (x) + sec(x)*tan(x)/*\tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 2*\1 + tan (x)/*tan(x)/ - ------------------------------------------------------------ + ------------------------------------------------------------- - ----------------------------------------------------------------------------------------------------------------------------|
                            |                                    tan(sec(x) + tan(x))                                                                                                                                                                                                                     tan(sec(x) + tan(x))                                              3                                                                                              2                                                                     |
                            \                                                                                                                                                                                                                                                                                                                                            tan (sec(x) + tan(x))                                                                          tan (sec(x) + tan(x))                                                    /
(tan2(tan(x)+sec(x))+1)(2(tan2(tan(x)+sec(x))+1)2tan3(tan(x)+sec(x))(tan2(x)+tan(x)sec(x)+1)33tan2(tan(x)+sec(x))(tan2(tan(x)+sec(x))+1)(2(tan2(x)+1)tan(x)+(tan2(x)+1)sec(x)+tan2(x)sec(x))(tan2(x)+tan(x)sec(x)+1)4(tan2(x)+tan(x)sec(x)+1)3tan(tan(x)+sec(x))(tan2(tan(x)+sec(x))+1)+6(2(tan2(x)+1)tan(x)+(tan2(x)+1)sec(x)+tan2(x)sec(x))(tan2(x)+tan(x)sec(x)+1)+4(tan2(x)+tan(x)sec(x)+1)3tan(tan(x)+sec(x))+1tan(tan(x)+sec(x))(2(tan2(x)+1)2+4(tan2(x)+1)tan2(x)+5(tan2(x)+1)tan(x)sec(x)+tan3(x)sec(x)))\left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right) \left(\frac{2 \left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right)^{2}}{\tan^{3}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right)^{3} - \frac{3}{\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right) \left(2 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} + \left(\tan^{2}{\left (x \right )} + 1\right) \sec{\left (x \right )} + \tan^{2}{\left (x \right )} \sec{\left (x \right )}\right) \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right) - \frac{4 \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right)^{3}}{\tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(\tan^{2}{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + 1\right) + 6 \left(2 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} + \left(\tan^{2}{\left (x \right )} + 1\right) \sec{\left (x \right )} + \tan^{2}{\left (x \right )} \sec{\left (x \right )}\right) \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right) + 4 \left(\tan^{2}{\left (x \right )} + \tan{\left (x \right )} \sec{\left (x \right )} + 1\right)^{3} \tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )} + \frac{1}{\tan{\left (\tan{\left (x \right )} + \sec{\left (x \right )} \right )}} \left(2 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} + 4 \left(\tan^{2}{\left (x \right )} + 1\right) \tan^{2}{\left (x \right )} + 5 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )} \sec{\left (x \right )} + \tan^{3}{\left (x \right )} \sec{\left (x \right )}\right)\right)