Производная (log(x)/log(sin(x)))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   log(x)  
-----------
log(sin(x))
log(x)log(sin(x))\frac{\log{\left (x \right )}}{\log{\left (\sin{\left (x \right )} \right )}}
Подробное решение
  1. Применим правило производной частного:

    ddx(f(x)g(x))=1g2(x)(f(x)ddxg(x)+g(x)ddxf(x))\frac{d}{d x}\left(\frac{f{\left (x \right )}}{g{\left (x \right )}}\right) = \frac{1}{g^{2}{\left (x \right )}} \left(- f{\left (x \right )} \frac{d}{d x} g{\left (x \right )} + g{\left (x \right )} \frac{d}{d x} f{\left (x \right )}\right)

    f(x)=log(x)f{\left (x \right )} = \log{\left (x \right )} и g(x)=log(sin(x))g{\left (x \right )} = \log{\left (\sin{\left (x \right )} \right )}.

    Чтобы найти ddxf(x)\frac{d}{d x} f{\left (x \right )}:

    1. Производная log(x)\log{\left (x \right )} является 1x\frac{1}{x}.

    Чтобы найти ddxg(x)\frac{d}{d x} g{\left (x \right )}:

    1. Заменим u=sin(x)u = \sin{\left (x \right )}.

    2. Производная log(u)\log{\left (u \right )} является 1u\frac{1}{u}.

    3. Затем примените цепочку правил. Умножим на ddxsin(x)\frac{d}{d x} \sin{\left (x \right )}:

      1. Производная синуса есть косинус:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left (x \right )} = \cos{\left (x \right )}

      В результате последовательности правил:

      cos(x)sin(x)\frac{\cos{\left (x \right )}}{\sin{\left (x \right )}}

    Теперь применим правило производной деления:

    1log2(sin(x))(log(x)cos(x)sin(x)+1xlog(sin(x)))\frac{1}{\log^{2}{\left (\sin{\left (x \right )} \right )}} \left(- \frac{\log{\left (x \right )} \cos{\left (x \right )}}{\sin{\left (x \right )}} + \frac{1}{x} \log{\left (\sin{\left (x \right )} \right )}\right)

  2. Теперь упростим:

    1xlog(sin(x))(xlog(x)log(sin(x))tan(x)+1)\frac{1}{x \log{\left (\sin{\left (x \right )} \right )}} \left(- \frac{x \log{\left (x \right )}}{\log{\left (\sin{\left (x \right )} \right )} \tan{\left (x \right )}} + 1\right)


Ответ:

1xlog(sin(x))(xlog(x)log(sin(x))tan(x)+1)\frac{1}{x \log{\left (\sin{\left (x \right )} \right )}} \left(- \frac{x \log{\left (x \right )}}{\log{\left (\sin{\left (x \right )} \right )} \tan{\left (x \right )}} + 1\right)

График
02468-8-6-4-2-1010-2500025000
Первая производная [src]
      1            cos(x)*log(x)   
------------- - -------------------
x*log(sin(x))      2               
                log (sin(x))*sin(x)
log(x)cos(x)log2(sin(x))sin(x)+1xlog(sin(x))- \frac{\log{\left (x \right )} \cos{\left (x \right )}}{\log^{2}{\left (\sin{\left (x \right )} \right )} \sin{\left (x \right )}} + \frac{1}{x \log{\left (\sin{\left (x \right )} \right )}}
Вторая производная [src]
                           2                                             2            
  1       log(x)        cos (x)*log(x)           2*cos(x)           2*cos (x)*log(x)  
- -- + ----------- + ------------------- - -------------------- + --------------------
   2   log(sin(x))                  2      x*log(sin(x))*sin(x)      2            2   
  x                  log(sin(x))*sin (x)                          log (sin(x))*sin (x)
--------------------------------------------------------------------------------------
                                     log(sin(x))                                      
1log(sin(x))(log(x)log(sin(x))+log(x)cos2(x)log(sin(x))sin2(x)+2log(x)cos2(x)log2(sin(x))sin2(x)2cos(x)xlog(sin(x))sin(x)1x2)\frac{1}{\log{\left (\sin{\left (x \right )} \right )}} \left(\frac{\log{\left (x \right )}}{\log{\left (\sin{\left (x \right )} \right )}} + \frac{\log{\left (x \right )} \cos^{2}{\left (x \right )}}{\log{\left (\sin{\left (x \right )} \right )} \sin^{2}{\left (x \right )}} + \frac{2 \log{\left (x \right )} \cos^{2}{\left (x \right )}}{\log^{2}{\left (\sin{\left (x \right )} \right )} \sin^{2}{\left (x \right )}} - \frac{2 \cos{\left (x \right )}}{x \log{\left (\sin{\left (x \right )} \right )} \sin{\left (x \right )}} - \frac{1}{x^{2}}\right)
Третья производная [src]
                            3                      3                                            3                                              2                                               2          
2          3           6*cos (x)*log(x)       6*cos (x)*log(x)       6*cos(x)*log(x)       2*cos (x)*log(x)     2*cos(x)*log(x)           3*cos (x)                3*cos(x)               6*cos (x)       
-- + ------------- - -------------------- - -------------------- - ------------------- - ------------------- - ------------------ + --------------------- + --------------------- + ----------------------
 3   x*log(sin(x))      3            3         2            3         2                                 3      log(sin(x))*sin(x)                    2       2                           2            2   
x                    log (sin(x))*sin (x)   log (sin(x))*sin (x)   log (sin(x))*sin(x)   log(sin(x))*sin (x)                        x*log(sin(x))*sin (x)   x *log(sin(x))*sin(x)   x*log (sin(x))*sin (x)
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                               log(sin(x))                                                                                                
1log(sin(x))(2log(x)cos(x)log(sin(x))sin(x)2log(x)cos3(x)log(sin(x))sin3(x)6log(x)cos(x)log2(sin(x))sin(x)6log(x)cos3(x)log2(sin(x))sin3(x)6log(x)cos3(x)log3(sin(x))sin3(x)+3xlog(sin(x))+3cos2(x)xlog(sin(x))sin2(x)+6cos2(x)xlog2(sin(x))sin2(x)+3cos(x)x2log(sin(x))sin(x)+2x3)\frac{1}{\log{\left (\sin{\left (x \right )} \right )}} \left(- \frac{2 \log{\left (x \right )} \cos{\left (x \right )}}{\log{\left (\sin{\left (x \right )} \right )} \sin{\left (x \right )}} - \frac{2 \log{\left (x \right )} \cos^{3}{\left (x \right )}}{\log{\left (\sin{\left (x \right )} \right )} \sin^{3}{\left (x \right )}} - \frac{6 \log{\left (x \right )} \cos{\left (x \right )}}{\log^{2}{\left (\sin{\left (x \right )} \right )} \sin{\left (x \right )}} - \frac{6 \log{\left (x \right )} \cos^{3}{\left (x \right )}}{\log^{2}{\left (\sin{\left (x \right )} \right )} \sin^{3}{\left (x \right )}} - \frac{6 \log{\left (x \right )} \cos^{3}{\left (x \right )}}{\log^{3}{\left (\sin{\left (x \right )} \right )} \sin^{3}{\left (x \right )}} + \frac{3}{x \log{\left (\sin{\left (x \right )} \right )}} + \frac{3 \cos^{2}{\left (x \right )}}{x \log{\left (\sin{\left (x \right )} \right )} \sin^{2}{\left (x \right )}} + \frac{6 \cos^{2}{\left (x \right )}}{x \log^{2}{\left (\sin{\left (x \right )} \right )} \sin^{2}{\left (x \right )}} + \frac{3 \cos{\left (x \right )}}{x^{2} \log{\left (\sin{\left (x \right )} \right )} \sin{\left (x \right )}} + \frac{2}{x^{3}}\right)