Подробное решение
Применим правило производной частного:
и .
Чтобы найти :
Производная является .
Чтобы найти :
Заменим .
Производная является .
Затем примените цепочку правил. Умножим на :
Производная синуса есть косинус:
В результате последовательности правил:
Теперь применим правило производной деления:
Теперь упростим:
Ответ:
1 cos(x)*log(x)
------------- - -------------------
x*log(sin(x)) 2
log (sin(x))*sin(x)
$$- \frac{\log{\left (x \right )} \cos{\left (x \right )}}{\log^{2}{\left (\sin{\left (x \right )} \right )} \sin{\left (x \right )}} + \frac{1}{x \log{\left (\sin{\left (x \right )} \right )}}$$
2 2
1 log(x) cos (x)*log(x) 2*cos(x) 2*cos (x)*log(x)
- -- + ----------- + ------------------- - -------------------- + --------------------
2 log(sin(x)) 2 x*log(sin(x))*sin(x) 2 2
x log(sin(x))*sin (x) log (sin(x))*sin (x)
--------------------------------------------------------------------------------------
log(sin(x))
$$\frac{1}{\log{\left (\sin{\left (x \right )} \right )}} \left(\frac{\log{\left (x \right )}}{\log{\left (\sin{\left (x \right )} \right )}} + \frac{\log{\left (x \right )} \cos^{2}{\left (x \right )}}{\log{\left (\sin{\left (x \right )} \right )} \sin^{2}{\left (x \right )}} + \frac{2 \log{\left (x \right )} \cos^{2}{\left (x \right )}}{\log^{2}{\left (\sin{\left (x \right )} \right )} \sin^{2}{\left (x \right )}} - \frac{2 \cos{\left (x \right )}}{x \log{\left (\sin{\left (x \right )} \right )} \sin{\left (x \right )}} - \frac{1}{x^{2}}\right)$$
3 3 3 2 2
2 3 6*cos (x)*log(x) 6*cos (x)*log(x) 6*cos(x)*log(x) 2*cos (x)*log(x) 2*cos(x)*log(x) 3*cos (x) 3*cos(x) 6*cos (x)
-- + ------------- - -------------------- - -------------------- - ------------------- - ------------------- - ------------------ + --------------------- + --------------------- + ----------------------
3 x*log(sin(x)) 3 3 2 3 2 3 log(sin(x))*sin(x) 2 2 2 2
x log (sin(x))*sin (x) log (sin(x))*sin (x) log (sin(x))*sin(x) log(sin(x))*sin (x) x*log(sin(x))*sin (x) x *log(sin(x))*sin(x) x*log (sin(x))*sin (x)
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
log(sin(x))
$$\frac{1}{\log{\left (\sin{\left (x \right )} \right )}} \left(- \frac{2 \log{\left (x \right )} \cos{\left (x \right )}}{\log{\left (\sin{\left (x \right )} \right )} \sin{\left (x \right )}} - \frac{2 \log{\left (x \right )} \cos^{3}{\left (x \right )}}{\log{\left (\sin{\left (x \right )} \right )} \sin^{3}{\left (x \right )}} - \frac{6 \log{\left (x \right )} \cos{\left (x \right )}}{\log^{2}{\left (\sin{\left (x \right )} \right )} \sin{\left (x \right )}} - \frac{6 \log{\left (x \right )} \cos^{3}{\left (x \right )}}{\log^{2}{\left (\sin{\left (x \right )} \right )} \sin^{3}{\left (x \right )}} - \frac{6 \log{\left (x \right )} \cos^{3}{\left (x \right )}}{\log^{3}{\left (\sin{\left (x \right )} \right )} \sin^{3}{\left (x \right )}} + \frac{3}{x \log{\left (\sin{\left (x \right )} \right )}} + \frac{3 \cos^{2}{\left (x \right )}}{x \log{\left (\sin{\left (x \right )} \right )} \sin^{2}{\left (x \right )}} + \frac{6 \cos^{2}{\left (x \right )}}{x \log^{2}{\left (\sin{\left (x \right )} \right )} \sin^{2}{\left (x \right )}} + \frac{3 \cos{\left (x \right )}}{x^{2} \log{\left (\sin{\left (x \right )} \right )} \sin{\left (x \right )}} + \frac{2}{x^{3}}\right)$$