log(x - E)
Заменим u=x−eu = x - eu=x−e.
Производная log(u)\log{\left (u \right )}log(u) является 1u\frac{1}{u}u1.
Затем примените цепочку правил. Умножим на ddx(x−e)\frac{d}{d x}\left(x - e\right)dxd(x−e):
дифференцируем x−ex - ex−e почленно:
В силу правила, применим: xxx получим 111
Производная постоянной −e- e−e равна нулю.
В результате: 111
В результате последовательности правил:
1x−e\frac{1}{x - e}x−e1
Ответ:
1 ----- x - E
-1 -------- 2 (x - E)
2 -------- 3 (x - E)