Найти производную y' = f'(x) = log((x+2)/(x-2)) (логарифм от ((х плюс 2) делить на (х минус 2))) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная log((x+2)/(x-2))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   /x + 2\
log|-----|
   \x - 2/
$$\log{\left (\frac{x + 2}{x - 2} \right )}$$
Подробное решение
  1. Заменим .

  2. Производная является .

  3. Затем примените цепочку правил. Умножим на :

    1. Применим правило производной частного:

      и .

      Чтобы найти :

      1. дифференцируем почленно:

        1. Производная постоянной равна нулю.

        2. В силу правила, применим: получим

        В результате:

      Чтобы найти :

      1. дифференцируем почленно:

        1. Производная постоянной равна нулю.

        2. В силу правила, применим: получим

        В результате:

      Теперь применим правило производной деления:

    В результате последовательности правил:

  4. Теперь упростим:


Ответ:

График
Первая производная [src]
        /  1      x + 2  \
(x - 2)*|----- - --------|
        |x - 2          2|
        \        (x - 2) /
--------------------------
          x + 2           
$$\frac{1}{x + 2} \left(x - 2\right) \left(\frac{1}{x - 2} - \frac{x + 2}{\left(x - 2\right)^{2}}\right)$$
Вторая производная [src]
/    2 + x \ /    1        1  \
|1 - ------|*|- ------ - -----|
\    -2 + x/ \  -2 + x   2 + x/
-------------------------------
             2 + x             
$$\frac{1}{x + 2} \left(1 - \frac{x + 2}{x - 2}\right) \left(- \frac{1}{x + 2} - \frac{1}{x - 2}\right)$$
Третья производная [src]
  /    2 + x \ /    1          1              1        \
2*|1 - ------|*|--------- + -------- + ----------------|
  \    -2 + x/ |        2          2   (-2 + x)*(2 + x)|
               \(-2 + x)    (2 + x)                    /
--------------------------------------------------------
                         2 + x                          
$$\frac{2}{x + 2} \left(1 - \frac{x + 2}{x - 2}\right) \left(\frac{1}{\left(x + 2\right)^{2}} + \frac{1}{\left(x - 2\right) \left(x + 2\right)} + \frac{1}{\left(x - 2\right)^{2}}\right)$$