Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
acos(x) / log(log(x + E)) acos(x) \
log (x + E)*|- --------------- + ------------------|
| ________ (x + E)*log(x + E)|
| / 2 |
\ \/ 1 - x /
$$\left(- \frac{1}{\sqrt{- x^{2} + 1}} \log{\left (\log{\left (x + e \right )} \right )} + \frac{\operatorname{acos}{\left (x \right )}}{\left(x + e\right) \log{\left (x + e \right )}}\right) \log^{\operatorname{acos}{\left (x \right )}}{\left (x + e \right )}$$
/ 2 \
acos(x) |/log(log(E + x)) acos(x) \ x*log(log(E + x)) acos(x) acos(x) 2 |
log (E + x)*||--------------- - ------------------| - ----------------- - ------------------- - -------------------- - ------------------------------|
|| ________ (E + x)*log(E + x)| 3/2 2 2 2 ________ |
|| / 2 | / 2\ (E + x) *log(E + x) (E + x) *log (E + x) / 2 |
\\ \/ 1 - x / \1 - x / \/ 1 - x *(E + x)*log(E + x)/
$$\left(- \frac{x}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} \log{\left (\log{\left (x + e \right )} \right )} + \left(\frac{1}{\sqrt{- x^{2} + 1}} \log{\left (\log{\left (x + e \right )} \right )} - \frac{\operatorname{acos}{\left (x \right )}}{\left(x + e\right) \log{\left (x + e \right )}}\right)^{2} - \frac{2}{\left(x + e\right) \sqrt{- x^{2} + 1} \log{\left (x + e \right )}} - \frac{\operatorname{acos}{\left (x \right )}}{\left(x + e\right)^{2} \log{\left (x + e \right )}} - \frac{\operatorname{acos}{\left (x \right )}}{\left(x + e\right)^{2} \log^{2}{\left (x + e \right )}}\right) \log^{\operatorname{acos}{\left (x \right )}}{\left (x + e \right )}$$
/ 3 2 \
acos(x) | /log(log(E + x)) acos(x) \ log(log(E + x)) /log(log(E + x)) acos(x) \ /x*log(log(E + x)) acos(x) acos(x) 2 \ 3*x *log(log(E + x)) 2*acos(x) 2*acos(x) 3 3 3*acos(x) 3*x |
log (E + x)*|- |--------------- - ------------------| - --------------- + 3*|--------------- - ------------------|*|----------------- + ------------------- + -------------------- + ------------------------------| - -------------------- + ------------------- + -------------------- + ------------------------------- + -------------------------------- + -------------------- - ------------------------------|
| | ________ (E + x)*log(E + x)| 3/2 | ________ (E + x)*log(E + x)| | 3/2 2 2 2 ________ | 5/2 3 3 3 ________ ________ 3 2 3/2 |
| | / 2 | / 2\ | / 2 | | / 2\ (E + x) *log(E + x) (E + x) *log (E + x) / 2 | / 2\ (E + x) *log(E + x) (E + x) *log (E + x) / 2 2 / 2 2 2 (E + x) *log (E + x) / 2\ |
\ \ \/ 1 - x / \1 - x / \ \/ 1 - x / \ \1 - x / \/ 1 - x *(E + x)*log(E + x)/ \1 - x / \/ 1 - x *(E + x) *log(E + x) \/ 1 - x *(E + x) *log (E + x) \1 - x / *(E + x)*log(E + x)/
$$\left(- \frac{3 x^{2}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} \log{\left (\log{\left (x + e \right )} \right )} - \frac{3 x}{\left(x + e\right) \left(- x^{2} + 1\right)^{\frac{3}{2}} \log{\left (x + e \right )}} - \left(\frac{1}{\sqrt{- x^{2} + 1}} \log{\left (\log{\left (x + e \right )} \right )} - \frac{\operatorname{acos}{\left (x \right )}}{\left(x + e\right) \log{\left (x + e \right )}}\right)^{3} + 3 \left(\frac{1}{\sqrt{- x^{2} + 1}} \log{\left (\log{\left (x + e \right )} \right )} - \frac{\operatorname{acos}{\left (x \right )}}{\left(x + e\right) \log{\left (x + e \right )}}\right) \left(\frac{x}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} \log{\left (\log{\left (x + e \right )} \right )} + \frac{2}{\left(x + e\right) \sqrt{- x^{2} + 1} \log{\left (x + e \right )}} + \frac{\operatorname{acos}{\left (x \right )}}{\left(x + e\right)^{2} \log{\left (x + e \right )}} + \frac{\operatorname{acos}{\left (x \right )}}{\left(x + e\right)^{2} \log^{2}{\left (x + e \right )}}\right) - \frac{1}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} \log{\left (\log{\left (x + e \right )} \right )} + \frac{3}{\left(x + e\right)^{2} \sqrt{- x^{2} + 1} \log{\left (x + e \right )}} + \frac{3}{\left(x + e\right)^{2} \sqrt{- x^{2} + 1} \log^{2}{\left (x + e \right )}} + \frac{2 \operatorname{acos}{\left (x \right )}}{\left(x + e\right)^{3} \log{\left (x + e \right )}} + \frac{3 \operatorname{acos}{\left (x \right )}}{\left(x + e\right)^{3} \log^{2}{\left (x + e \right )}} + \frac{2 \operatorname{acos}{\left (x \right )}}{\left(x + e\right)^{3} \log^{3}{\left (x + e \right )}}\right) \log^{\operatorname{acos}{\left (x \right )}}{\left (x + e \right )}$$