Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
acot(x) / log(log(x) + 1) acot(x) \
(log(x) + 1) *|- --------------- + --------------|
| 2 x*(log(x) + 1)|
\ 1 + x /
$$\left(- \frac{1}{x^{2} + 1} \log{\left (\log{\left (x \right )} + 1 \right )} + \frac{\operatorname{acot}{\left (x \right )}}{x \left(\log{\left (x \right )} + 1\right)}\right) \left(\log{\left (x \right )} + 1\right)^{\operatorname{acot}{\left (x \right )}}$$
/ 2 \
acot(x) |/log(1 + log(x)) acot(x) \ acot(x) acot(x) 2 2*x*log(1 + log(x))|
(1 + log(x)) *||--------------- - --------------| - --------------- - ---------------- - ----------------------- + -------------------|
|| 2 x*(1 + log(x))| 2 2 2 / 2\ 2 |
|\ 1 + x / x *(1 + log(x)) x *(1 + log(x)) x*\1 + x /*(1 + log(x)) / 2\ |
\ \1 + x / /
$$\left(\log{\left (x \right )} + 1\right)^{\operatorname{acot}{\left (x \right )}} \left(\frac{2 x}{\left(x^{2} + 1\right)^{2}} \log{\left (\log{\left (x \right )} + 1 \right )} + \left(\frac{1}{x^{2} + 1} \log{\left (\log{\left (x \right )} + 1 \right )} - \frac{\operatorname{acot}{\left (x \right )}}{x \left(\log{\left (x \right )} + 1\right)}\right)^{2} - \frac{2}{x \left(x^{2} + 1\right) \left(\log{\left (x \right )} + 1\right)} - \frac{\operatorname{acot}{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} + 1\right)} - \frac{\operatorname{acot}{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} + 1\right)^{2}}\right)$$
/ 3 2 \
acot(x) | /log(1 + log(x)) acot(x) \ 2*log(1 + log(x)) /log(1 + log(x)) acot(x) \ / acot(x) acot(x) 2*x*log(1 + log(x)) 2 \ 6 8*x *log(1 + log(x)) 2*acot(x) 2*acot(x) 3*acot(x) 3 3 |
(1 + log(x)) *|- |--------------- - --------------| + ----------------- + 3*|--------------- - --------------|*|--------------- + ---------------- - ------------------- + -----------------------| + ---------------------- - -------------------- + --------------- + ---------------- + ---------------- + ------------------------ + -------------------------|
| | 2 x*(1 + log(x))| 2 | 2 x*(1 + log(x))| | 2 2 2 2 / 2\ | 2 3 3 3 3 3 2 2 / 2\ 2 / 2\ 2|
| \ 1 + x / / 2\ \ 1 + x / |x *(1 + log(x)) x *(1 + log(x)) / 2\ x*\1 + x /*(1 + log(x))| / 2\ / 2\ x *(1 + log(x)) x *(1 + log(x)) x *(1 + log(x)) x *\1 + x /*(1 + log(x)) x *\1 + x /*(1 + log(x)) |
\ \1 + x / \ \1 + x / / \1 + x / *(1 + log(x)) \1 + x / /
$$\left(\log{\left (x \right )} + 1\right)^{\operatorname{acot}{\left (x \right )}} \left(- \frac{8 x^{2}}{\left(x^{2} + 1\right)^{3}} \log{\left (\log{\left (x \right )} + 1 \right )} - \left(\frac{1}{x^{2} + 1} \log{\left (\log{\left (x \right )} + 1 \right )} - \frac{\operatorname{acot}{\left (x \right )}}{x \left(\log{\left (x \right )} + 1\right)}\right)^{3} + 3 \left(\frac{1}{x^{2} + 1} \log{\left (\log{\left (x \right )} + 1 \right )} - \frac{\operatorname{acot}{\left (x \right )}}{x \left(\log{\left (x \right )} + 1\right)}\right) \left(- \frac{2 x}{\left(x^{2} + 1\right)^{2}} \log{\left (\log{\left (x \right )} + 1 \right )} + \frac{2}{x \left(x^{2} + 1\right) \left(\log{\left (x \right )} + 1\right)} + \frac{\operatorname{acot}{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} + 1\right)} + \frac{\operatorname{acot}{\left (x \right )}}{x^{2} \left(\log{\left (x \right )} + 1\right)^{2}}\right) + \frac{2}{\left(x^{2} + 1\right)^{2}} \log{\left (\log{\left (x \right )} + 1 \right )} + \frac{6}{\left(x^{2} + 1\right)^{2} \left(\log{\left (x \right )} + 1\right)} + \frac{3}{x^{2} \left(x^{2} + 1\right) \left(\log{\left (x \right )} + 1\right)} + \frac{3}{x^{2} \left(x^{2} + 1\right) \left(\log{\left (x \right )} + 1\right)^{2}} + \frac{2 \operatorname{acot}{\left (x \right )}}{x^{3} \left(\log{\left (x \right )} + 1\right)} + \frac{3 \operatorname{acot}{\left (x \right )}}{x^{3} \left(\log{\left (x \right )} + 1\right)^{2}} + \frac{2 \operatorname{acot}{\left (x \right )}}{x^{3} \left(\log{\left (x \right )} + 1\right)^{3}}\right)$$