acot(x) log(x)
------- - ------
x 2
1 + x
$$- \frac{\log{\left (x \right )}}{x^{2} + 1} + \frac{1}{x} \operatorname{acot}{\left (x \right )}$$
acot(x) 2 2*x*log(x)
- ------- - ---------- + ----------
2 / 2\ 2
x x*\1 + x / / 2\
\1 + x /
$$\frac{2 x \log{\left (x \right )}}{\left(x^{2} + 1\right)^{2}} - \frac{2}{x \left(x^{2} + 1\right)} - \frac{1}{x^{2}} \operatorname{acot}{\left (x \right )}$$
2
6 2*acot(x) 2*log(x) 3 8*x *log(x)
--------- + --------- + --------- + ----------- - -----------
2 3 2 2 / 2\ 3
/ 2\ x / 2\ x *\1 + x / / 2\
\1 + x / \1 + x / \1 + x /
$$- \frac{8 x^{2} \log{\left (x \right )}}{\left(x^{2} + 1\right)^{3}} + \frac{2 \log{\left (x \right )}}{\left(x^{2} + 1\right)^{2}} + \frac{6}{\left(x^{2} + 1\right)^{2}} + \frac{3}{x^{2} \left(x^{2} + 1\right)} + \frac{2}{x^{3}} \operatorname{acot}{\left (x \right )}$$