Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
/ x\ / x \
\2 / | 2 x |
(log(x)) *|-------- + 2 *log(2)*log(log(x))|
\x*log(x) /
$$\left(2^{x} \log{\left (2 \right )} \log{\left (\log{\left (x \right )} \right )} + \frac{2^{x}}{x \log{\left (x \right )}}\right) \log^{2^{x}}{\left (x \right )}$$
/ x\ / 2 \
x \2 / | x / 1 \ 2 1 1 2*log(2)|
2 *(log(x)) *|2 *|-------- + log(2)*log(log(x))| + log (2)*log(log(x)) - --------- - ---------- + --------|
| \x*log(x) / 2 2 2 x*log(x)|
\ x *log(x) x *log (x) /
$$2^{x} \left(2^{x} \left(\log{\left (2 \right )} \log{\left (\log{\left (x \right )} \right )} + \frac{1}{x \log{\left (x \right )}}\right)^{2} + \log^{2}{\left (2 \right )} \log{\left (\log{\left (x \right )} \right )} + \frac{2 \log{\left (2 \right )}}{x \log{\left (x \right )}} - \frac{1}{x^{2} \log{\left (x \right )}} - \frac{1}{x^{2} \log^{2}{\left (x \right )}}\right) \log^{2^{x}}{\left (x \right )}$$
/ x\ / 3 2 \
x \2 / | 2*x / 1 \ 3 2 2 3 3*log(2) 3*log(2) x / 1 \ / 2 1 1 2*log(2)\ 3*log (2)|
2 *(log(x)) *|2 *|-------- + log(2)*log(log(x))| + log (2)*log(log(x)) + --------- + ---------- + ---------- - --------- - ---------- + 3*2 *|-------- + log(2)*log(log(x))|*|log (2)*log(log(x)) - --------- - ---------- + --------| + ---------|
| \x*log(x) / 3 3 3 3 2 2 2 2 \x*log(x) / | 2 2 2 x*log(x)| x*log(x)|
\ x *log(x) x *log (x) x *log (x) x *log(x) x *log (x) \ x *log(x) x *log (x) / /
$$2^{x} \left(2^{2 x} \left(\log{\left (2 \right )} \log{\left (\log{\left (x \right )} \right )} + \frac{1}{x \log{\left (x \right )}}\right)^{3} + 3 \cdot 2^{x} \left(\log{\left (2 \right )} \log{\left (\log{\left (x \right )} \right )} + \frac{1}{x \log{\left (x \right )}}\right) \left(\log^{2}{\left (2 \right )} \log{\left (\log{\left (x \right )} \right )} + \frac{2 \log{\left (2 \right )}}{x \log{\left (x \right )}} - \frac{1}{x^{2} \log{\left (x \right )}} - \frac{1}{x^{2} \log^{2}{\left (x \right )}}\right) + \log^{3}{\left (2 \right )} \log{\left (\log{\left (x \right )} \right )} + \frac{3 \log^{2}{\left (2 \right )}}{x \log{\left (x \right )}} - \frac{3 \log{\left (2 \right )}}{x^{2} \log{\left (x \right )}} - \frac{3 \log{\left (2 \right )}}{x^{2} \log^{2}{\left (x \right )}} + \frac{2}{x^{3} \log{\left (x \right )}} + \frac{3}{x^{3} \log^{2}{\left (x \right )}} + \frac{2}{x^{3} \log^{3}{\left (x \right )}}\right) \log^{2^{x}}{\left (x \right )}$$