Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
x ________ / 1 log(log(x))\
\/ log(x) *|--------- - -----------|
| 2 2 |
\x *log(x) x /
$$\left(- \frac{1}{x^{2}} \log{\left (\log{\left (x \right )} \right )} + \frac{1}{x^{2} \log{\left (x \right )}}\right) \log^{\frac{1}{x}}{\left (x \right )}$$
/ 2\
| / 1 \ |
| |- ------ + log(log(x))| |
x ________ | 1 3 \ log(x) / |
\/ log(x) *|- ------- - ------ + 2*log(log(x)) + -------------------------|
| 2 log(x) x |
\ log (x) /
---------------------------------------------------------------------------
3
x
$$\frac{1}{x^{3}} \left(2 \log{\left (\log{\left (x \right )} \right )} - \frac{3}{\log{\left (x \right )}} - \frac{1}{\log^{2}{\left (x \right )}} + \frac{1}{x} \left(\log{\left (\log{\left (x \right )} \right )} - \frac{1}{\log{\left (x \right )}}\right)^{2}\right) \log^{\frac{1}{x}}{\left (x \right )}$$
/ 3 / 1 \ / 1 3 \\
| / 1 \ 3*|- ------ + log(log(x))|*|------- - 2*log(log(x)) + ------||
| |- ------ + log(log(x))| \ log(x) / | 2 log(x)||
x ________ | 2 6 11 \ log(x) / \log (x) /|
\/ log(x) *|-6*log(log(x)) + ------- + ------- + ------ - ------------------------- + -------------------------------------------------------------|
| 3 2 log(x) 2 x |
\ log (x) log (x) x /
----------------------------------------------------------------------------------------------------------------------------------------------------
4
x
$$\frac{1}{x^{4}} \left(- 6 \log{\left (\log{\left (x \right )} \right )} + \frac{11}{\log{\left (x \right )}} + \frac{6}{\log^{2}{\left (x \right )}} + \frac{2}{\log^{3}{\left (x \right )}} + \frac{3}{x} \left(\log{\left (\log{\left (x \right )} \right )} - \frac{1}{\log{\left (x \right )}}\right) \left(- 2 \log{\left (\log{\left (x \right )} \right )} + \frac{3}{\log{\left (x \right )}} + \frac{1}{\log^{2}{\left (x \right )}}\right) - \frac{1}{x^{2}} \left(\log{\left (\log{\left (x \right )} \right )} - \frac{1}{\log{\left (x \right )}}\right)^{3}\right) \log^{\frac{1}{x}}{\left (x \right )}$$