Производная log(x^3)/3

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   / 3\
log\x /
-------
   3   
13log(x3)\frac{1}{3} \log{\left (x^{3} \right )}
Подробное решение
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Заменим u=x3u = x^{3}.

    2. Производная log(u)\log{\left (u \right )} является 1u\frac{1}{u}.

    3. Затем примените цепочку правил. Умножим на ddxx3\frac{d}{d x} x^{3}:

      1. В силу правила, применим: x3x^{3} получим 3x23 x^{2}

      В результате последовательности правил:

      3x\frac{3}{x}

    Таким образом, в результате: 1x\frac{1}{x}


Ответ:

1x\frac{1}{x}

График
02468-8-6-4-2-1010-2020
Первая производная [src]
1
-
x
1x\frac{1}{x}
Вторая производная [src]
-1 
---
  2
 x 
1x2- \frac{1}{x^{2}}
Третья производная [src]
2 
--
 3
x 
2x3\frac{2}{x^{3}}