Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
x / 1 \
log (x)*|------ + log(log(x))|
\log(x) /
$$\left(\log{\left (\log{\left (x \right )} \right )} + \frac{1}{\log{\left (x \right )}}\right) \log^{x}{\left (x \right )}$$
/ 1 \
| 2 1 - ------|
x |/ 1 \ log(x)|
log (x)*||------ + log(log(x))| + ----------|
\\log(x) / x*log(x) /
$$\left(\left(\log{\left (\log{\left (x \right )} \right )} + \frac{1}{\log{\left (x \right )}}\right)^{2} + \frac{1 - \frac{1}{\log{\left (x \right )}}}{x \log{\left (x \right )}}\right) \log^{x}{\left (x \right )}$$
/ 2 \
| 1 - ------- / 1 \ / 1 \|
| 3 2 3*|1 - ------|*|------ + log(log(x))||
x |/ 1 \ log (x) \ log(x)/ \log(x) /|
log (x)*||------ + log(log(x))| - ----------- + -------------------------------------|
|\log(x) / 2 x*log(x) |
\ x *log(x) /
$$\left(\left(\log{\left (\log{\left (x \right )} \right )} + \frac{1}{\log{\left (x \right )}}\right)^{3} + \frac{3}{x \log{\left (x \right )}} \left(1 - \frac{1}{\log{\left (x \right )}}\right) \left(\log{\left (\log{\left (x \right )} \right )} + \frac{1}{\log{\left (x \right )}}\right) - \frac{1 - \frac{2}{\log^{2}{\left (x \right )}}}{x^{2} \log{\left (x \right )}}\right) \log^{x}{\left (x \right )}$$