Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
/ 2\
\x / / x \
(log(x)) *|------ + 2*x*log(log(x))|
\log(x) /
$$\left(2 x \log{\left (\log{\left (x \right )} \right )} + \frac{x}{\log{\left (x \right )}}\right) \log^{x^{2}}{\left (x \right )}$$
/ 2\ / 2\
\x / | 1 3 2 / 1 \ |
(log(x)) *|- ------- + 2*log(log(x)) + ------ + x *|------ + 2*log(log(x))| |
| 2 log(x) \log(x) / |
\ log (x) /
$$\left(x^{2} \left(2 \log{\left (\log{\left (x \right )} \right )} + \frac{1}{\log{\left (x \right )}}\right)^{2} + 2 \log{\left (\log{\left (x \right )} \right )} + \frac{3}{\log{\left (x \right )}} - \frac{1}{\log^{2}{\left (x \right )}}\right) \log^{x^{2}}{\left (x \right )}$$
/ 3 2 \
| 2 - ------ + ------- |
/ 2\ | 3 log(x) 2 |
\x / | 3 / 1 \ log (x) / 1 \ / 1 3 \|
(log(x)) *|x *|------ + 2*log(log(x))| + -------------------- + 3*x*|------ + 2*log(log(x))|*|- ------- + 2*log(log(x)) + ------||
| \log(x) / x*log(x) \log(x) / | 2 log(x)||
\ \ log (x) //
$$\left(x^{3} \left(2 \log{\left (\log{\left (x \right )} \right )} + \frac{1}{\log{\left (x \right )}}\right)^{3} + 3 x \left(2 \log{\left (\log{\left (x \right )} \right )} + \frac{1}{\log{\left (x \right )}}\right) \left(2 \log{\left (\log{\left (x \right )} \right )} + \frac{3}{\log{\left (x \right )}} - \frac{1}{\log^{2}{\left (x \right )}}\right) + \frac{1}{x \log{\left (x \right )}} \left(2 - \frac{3}{\log{\left (x \right )}} + \frac{2}{\log^{2}{\left (x \right )}}\right)\right) \log^{x^{2}}{\left (x \right )}$$