Производная -2*cos(x)+2

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
-2*cos(x) + 2
2cos(x)+2- 2 \cos{\left (x \right )} + 2
Подробное решение
  1. дифференцируем 2cos(x)+2- 2 \cos{\left (x \right )} + 2 почленно:

    1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

      1. Производная косинус есть минус синус:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left (x \right )} = - \sin{\left (x \right )}

      Таким образом, в результате: 2sin(x)2 \sin{\left (x \right )}

    2. Производная постоянной 22 равна нулю.

    В результате: 2sin(x)2 \sin{\left (x \right )}


Ответ:

2sin(x)2 \sin{\left (x \right )}

График
02468-8-6-4-2-10105-5
Первая производная [src]
2*sin(x)
2sin(x)2 \sin{\left (x \right )}
Вторая производная [src]
2*cos(x)
2cos(x)2 \cos{\left (x \right )}
Третья производная [src]
-2*sin(x)
2sin(x)- 2 \sin{\left (x \right )}