Производная -6*cos(2*x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
-6*cos(2*x)
6cos(2x)- 6 \cos{\left (2 x \right )}
Подробное решение
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Заменим u=2xu = 2 x.

    2. Производная косинус есть минус синус:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left (u \right )} = - \sin{\left (u \right )}

    3. Затем примените цепочку правил. Умножим на ddx(2x)\frac{d}{d x}\left(2 x\right):

      1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. В силу правила, применим: xx получим 11

        Таким образом, в результате: 22

      В результате последовательности правил:

      2sin(2x)- 2 \sin{\left (2 x \right )}

    Таким образом, в результате: 12sin(2x)12 \sin{\left (2 x \right )}


Ответ:

12sin(2x)12 \sin{\left (2 x \right )}

График
02468-8-6-4-2-1010-2525
Первая производная [src]
12*sin(2*x)
12sin(2x)12 \sin{\left (2 x \right )}
Вторая производная [src]
24*cos(2*x)
24cos(2x)24 \cos{\left (2 x \right )}
Третья производная [src]
-48*sin(2*x)
48sin(2x)- 48 \sin{\left (2 x \right )}