2
1 + tan (x)
------------------------------
_____________
/ 2 2
\/ 1 - tan (x) *acos (tan(x))
$$\frac{\tan^{2}{\left (x \right )} + 1}{\sqrt{- \tan^{2}{\left (x \right )} + 1} \operatorname{acos}^{2}{\left (\tan{\left (x \right )} \right )}}$$
/ / 2 \ / 2 \ \
/ 2 \ | 2*tan(x) \1 + tan (x)/*tan(x) 2*\1 + tan (x)/ |
\1 + tan (x)/*|---------------- + -------------------- - ---------------------------|
| _____________ 3/2 / 2 \ |
| / 2 / 2 \ \-1 + tan (x)/*acos(tan(x))|
\\/ 1 - tan (x) \1 - tan (x)/ /
-------------------------------------------------------------------------------------
2
acos (tan(x))
$$\frac{1}{\operatorname{acos}^{2}{\left (\tan{\left (x \right )} \right )}} \left(\tan^{2}{\left (x \right )} + 1\right) \left(- \frac{2 \tan^{2}{\left (x \right )} + 2}{\left(\tan^{2}{\left (x \right )} - 1\right) \operatorname{acos}{\left (\tan{\left (x \right )} \right )}} + \frac{2 \tan{\left (x \right )}}{\sqrt{- \tan^{2}{\left (x \right )} + 1}} + \frac{\left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )}}{\left(- \tan^{2}{\left (x \right )} + 1\right)^{\frac{3}{2}}}\right)$$
/ 2 2 2 2 \
| / 2 \ / 2 \ 2 / 2 \ 2 / 2 \ 2 / 2 \ / 2 \ / 2 \ |
/ 2 \ | \1 + tan (x)/ 2*\1 + tan (x)/ 4*tan (x) 3*\1 + tan (x)/ *tan (x) 6*\1 + tan (x)/ 6*tan (x)*\1 + tan (x)/ 12*\1 + tan (x)/*tan(x) 6*\1 + tan (x)/ *tan(x) |
\1 + tan (x)/*|---------------- + ---------------- + ---------------- + ------------------------ + ------------------------------ + ----------------------- - --------------------------- + ----------------------------|
| 3/2 _____________ _____________ 5/2 3/2 3/2 / 2 \ 2 |
|/ 2 \ / 2 / 2 / 2 \ / 2 \ 2 / 2 \ \-1 + tan (x)/*acos(tan(x)) / 2 \ |
\\1 - tan (x)/ \/ 1 - tan (x) \/ 1 - tan (x) \1 - tan (x)/ \1 - tan (x)/ *acos (tan(x)) \1 - tan (x)/ \-1 + tan (x)/ *acos(tan(x))/
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2
acos (tan(x))
$$\frac{1}{\operatorname{acos}^{2}{\left (\tan{\left (x \right )} \right )}} \left(\tan^{2}{\left (x \right )} + 1\right) \left(- \frac{12 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )}}{\left(\tan^{2}{\left (x \right )} - 1\right) \operatorname{acos}{\left (\tan{\left (x \right )} \right )}} + \frac{6 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} \tan{\left (x \right )}}{\left(\tan^{2}{\left (x \right )} - 1\right)^{2} \operatorname{acos}{\left (\tan{\left (x \right )} \right )}} + \frac{2 \tan^{2}{\left (x \right )} + 2}{\sqrt{- \tan^{2}{\left (x \right )} + 1}} + \frac{4 \tan^{2}{\left (x \right )}}{\sqrt{- \tan^{2}{\left (x \right )} + 1}} + \frac{\left(\tan^{2}{\left (x \right )} + 1\right)^{2}}{\left(- \tan^{2}{\left (x \right )} + 1\right)^{\frac{3}{2}}} + \frac{6 \left(\tan^{2}{\left (x \right )} + 1\right)^{2}}{\left(- \tan^{2}{\left (x \right )} + 1\right)^{\frac{3}{2}} \operatorname{acos}^{2}{\left (\tan{\left (x \right )} \right )}} + \frac{6 \left(\tan^{2}{\left (x \right )} + 1\right) \tan^{2}{\left (x \right )}}{\left(- \tan^{2}{\left (x \right )} + 1\right)^{\frac{3}{2}}} + \frac{3 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} \tan^{2}{\left (x \right )}}{\left(- \tan^{2}{\left (x \right )} + 1\right)^{\frac{5}{2}}}\right)$$