Применим правило производной частного:
dxdg(x)f(x)=g2(x)−f(x)dxdg(x)+g(x)dxdf(x)
f(x)=1 и g(x)=2x−5.
Чтобы найти dxdf(x):
Производная постоянной 1 равна нулю.
Чтобы найти dxdg(x):
дифференцируем 2x−5 почленно:
Производная постоянной −5 равна нулю.
Производная произведения константы на функцию есть произведение этой константы на производную данной функции.
В силу правила, применим: x получим 1
Таким образом, в результате: 2
В результате: 2
Теперь применим правило производной деления:
−(2x−5)22