Найти производную y' = f'(x) = 1/(1+y^2) (1 делить на (1 плюс у в квадрате)) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная 1/(1+y^2)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
  1   
------
     2
1 + y 
$$\frac{1}{y^{2} + 1}$$
Подробное решение
  1. Заменим .

  2. В силу правила, применим: получим

  3. Затем примените цепочку правил. Умножим на :

    1. дифференцируем почленно:

      1. Производная постоянной равна нулю.

      2. В силу правила, применим: получим

      В результате:

    В результате последовательности правил:


Ответ:

График
Первая производная [src]
   -2*y  
---------
        2
/     2\ 
\1 + y / 
$$- \frac{2 y}{\left(y^{2} + 1\right)^{2}}$$
Вторая производная [src]
  /         2 \
  |      4*y  |
2*|-1 + ------|
  |          2|
  \     1 + y /
---------------
           2   
   /     2\    
   \1 + y /    
$$\frac{\frac{8 y^{2}}{y^{2} + 1} - 2}{\left(y^{2} + 1\right)^{2}}$$
Третья производная [src]
     /        2 \
     |     2*y  |
24*y*|1 - ------|
     |         2|
     \    1 + y /
-----------------
            3    
    /     2\     
    \1 + y /     
$$\frac{24 y}{\left(y^{2} + 1\right)^{3}} \left(- \frac{2 y^{2}}{y^{2} + 1} + 1\right)$$