Найти производную y' = f'(x) = 1/x-2 (1 делить на х минус 2) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная 1/x-2

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
1    
- - 2
x    
$$-2 + \frac{1}{x}$$
Подробное решение
  1. дифференцируем почленно:

    1. В силу правила, применим: получим

    2. Производная постоянной равна нулю.

    В результате:


Ответ:

График
Первая производная [src]
-1 
---
  2
 x 
$$- \frac{1}{x^{2}}$$
Вторая производная [src]
2 
--
 3
x 
$$\frac{2}{x^{3}}$$
Третья производная [src]
-6 
---
  4
 x 
$$- \frac{6}{x^{4}}$$